Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sublevolico Structured version   Visualization version   GIF version

Theorem sublevolico 41128
Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sublevolico.a (𝜑𝐴 ∈ ℝ)
sublevolico.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
sublevolico (𝜑 → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))

Proof of Theorem sublevolico
StepHypRef Expression
1 sublevolico.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 sublevolico.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 10803 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 eqidd 2779 . . . . 5 (𝜑 → (𝐵𝐴) = (𝐵𝐴))
53, 4eqled 10479 . . . 4 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
65adantr 474 . . 3 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) ≤ (𝐵𝐴))
7 volico 41127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
82, 1, 7syl2anc 579 . . . . 5 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
98adantr 474 . . . 4 ((𝜑𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
10 iftrue 4313 . . . . 5 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
1110adantl 475 . . . 4 ((𝜑𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
129, 11eqtr2d 2815 . . 3 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) = (vol‘(𝐴[,)𝐵)))
136, 12breqtrd 4912 . 2 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
14 simpr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
151, 2lenltd 10522 . . . . . 6 (𝜑 → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1615adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1714, 16mpbird 249 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
181adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
192adantr 474 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2018, 19suble0d 10966 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵𝐴) ≤ 0 ↔ 𝐵𝐴))
2117, 20mpbird 249 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 0)
228adantr 474 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
23 iffalse 4316 . . . . 5 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
2423adantl 475 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
2522, 24eqtr2d 2815 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵)))
2621, 25breqtrd 4912 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
2713, 26pm2.61dan 803 1 (𝜑 → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  ifcif 4307   class class class wbr 4886  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272   < clt 10411  cle 10412  cmin 10606  [,)cico 12489  volcvol 23667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-rest 16469  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-top 21106  df-topon 21123  df-bases 21158  df-cmp 21599  df-ovol 23668  df-vol 23669
This theorem is referenced by:  ovolval5lem1  41793
  Copyright terms: Public domain W3C validator