![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sublevolico | Structured version Visualization version GIF version |
Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
sublevolico.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sublevolico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
sublevolico | ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublevolico.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | sublevolico.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | resubcld 10803 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
4 | eqidd 2779 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐵 − 𝐴)) | |
5 | 3, 4 | eqled 10479 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
6 | 5 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
7 | volico 41127 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
8 | 2, 1, 7 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
9 | 8 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
10 | iftrue 4313 | . . . . 5 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
11 | 10 | adantl 475 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
12 | 9, 11 | eqtr2d 2815 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (vol‘(𝐴[,)𝐵))) |
13 | 6, 12 | breqtrd 4912 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
14 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
15 | 1, 2 | lenltd 10522 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
16 | 15 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
17 | 14, 16 | mpbird 249 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
18 | 1 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
19 | 2 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
20 | 18, 19 | suble0d 10966 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵 − 𝐴) ≤ 0 ↔ 𝐵 ≤ 𝐴)) |
21 | 17, 20 | mpbird 249 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ 0) |
22 | 8 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
23 | iffalse 4316 | . . . . 5 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
24 | 23 | adantl 475 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
25 | 22, 24 | eqtr2d 2815 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵))) |
26 | 21, 25 | breqtrd 4912 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
27 | 13, 26 | pm2.61dan 803 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ifcif 4307 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 0cc0 10272 < clt 10411 ≤ cle 10412 − cmin 10606 [,)cico 12489 volcvol 23667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-rlim 14628 df-sum 14825 df-rest 16469 df-topgen 16490 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-top 21106 df-topon 21123 df-bases 21158 df-cmp 21599 df-ovol 23668 df-vol 23669 |
This theorem is referenced by: ovolval5lem1 41793 |
Copyright terms: Public domain | W3C validator |