![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sublevolico | Structured version Visualization version GIF version |
Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
sublevolico.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sublevolico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
sublevolico | ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublevolico.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | sublevolico.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | resubcld 11670 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
4 | eqidd 2726 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐵 − 𝐴)) | |
5 | 3, 4 | eqled 11345 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
7 | volico 45433 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
8 | 2, 1, 7 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
9 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
10 | iftrue 4530 | . . . . 5 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
11 | 10 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
12 | 9, 11 | eqtr2d 2766 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (vol‘(𝐴[,)𝐵))) |
13 | 6, 12 | breqtrd 5169 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
14 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
15 | 1, 2 | lenltd 11388 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
16 | 15 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
17 | 14, 16 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
18 | 1 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
19 | 2 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
20 | 18, 19 | suble0d 11833 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵 − 𝐴) ≤ 0 ↔ 𝐵 ≤ 𝐴)) |
21 | 17, 20 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ 0) |
22 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
23 | iffalse 4533 | . . . . 5 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
24 | 23 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
25 | 22, 24 | eqtr2d 2766 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵))) |
26 | 21, 25 | breqtrd 5169 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
27 | 13, 26 | pm2.61dan 811 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4524 class class class wbr 5143 ‘cfv 6542 (class class class)co 7415 ℝcr 11135 0cc0 11136 < clt 11276 ≤ cle 11277 − cmin 11472 [,)cico 13356 volcvol 25408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ioo 13358 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-rlim 15463 df-sum 15663 df-rest 17401 df-topgen 17422 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-top 22812 df-topon 22829 df-bases 22865 df-cmp 23307 df-ovol 25409 df-vol 25410 |
This theorem is referenced by: ovolval5lem1 46102 |
Copyright terms: Public domain | W3C validator |