Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sublevolico Structured version   Visualization version   GIF version

Theorem sublevolico 45969
Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sublevolico.a (𝜑𝐴 ∈ ℝ)
sublevolico.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
sublevolico (𝜑 → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))

Proof of Theorem sublevolico
StepHypRef Expression
1 sublevolico.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 sublevolico.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 11566 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 eqidd 2730 . . . . 5 (𝜑 → (𝐵𝐴) = (𝐵𝐴))
53, 4eqled 11237 . . . 4 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
65adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) ≤ (𝐵𝐴))
7 volico 45968 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
82, 1, 7syl2anc 584 . . . . 5 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
98adantr 480 . . . 4 ((𝜑𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
10 iftrue 4484 . . . . 5 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
1110adantl 481 . . . 4 ((𝜑𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
129, 11eqtr2d 2765 . . 3 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) = (vol‘(𝐴[,)𝐵)))
136, 12breqtrd 5121 . 2 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
14 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
151, 2lenltd 11280 . . . . . 6 (𝜑 → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1615adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1714, 16mpbird 257 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
181adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
192adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2018, 19suble0d 11729 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵𝐴) ≤ 0 ↔ 𝐵𝐴))
2117, 20mpbird 257 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 0)
228adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
23 iffalse 4487 . . . . 5 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
2423adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
2522, 24eqtr2d 2765 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵)))
2621, 25breqtrd 5121 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
2713, 26pm2.61dan 812 1 (𝜑 → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   < clt 11168  cle 11169  cmin 11365  [,)cico 13268  volcvol 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381  df-vol 25382
This theorem is referenced by:  ovolval5lem1  46637
  Copyright terms: Public domain W3C validator