![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sublevolico | Structured version Visualization version GIF version |
Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
sublevolico.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sublevolico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
sublevolico | ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublevolico.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | sublevolico.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | resubcld 11658 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
4 | eqidd 2728 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐵 − 𝐴)) | |
5 | 3, 4 | eqled 11333 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
7 | volico 45284 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
8 | 2, 1, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
10 | iftrue 4530 | . . . . 5 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
12 | 9, 11 | eqtr2d 2768 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (vol‘(𝐴[,)𝐵))) |
13 | 6, 12 | breqtrd 5168 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
15 | 1, 2 | lenltd 11376 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
17 | 14, 16 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
18 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
19 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
20 | 18, 19 | suble0d 11821 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵 − 𝐴) ≤ 0 ↔ 𝐵 ≤ 𝐴)) |
21 | 17, 20 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ 0) |
22 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
23 | iffalse 4533 | . . . . 5 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
25 | 22, 24 | eqtr2d 2768 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵))) |
26 | 21, 25 | breqtrd 5168 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
27 | 13, 26 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ifcif 4524 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℝcr 11123 0cc0 11124 < clt 11264 ≤ cle 11265 − cmin 11460 [,)cico 13344 volcvol 25366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fi 9420 df-sup 9451 df-inf 9452 df-oi 9519 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-ioo 13346 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-fl 13775 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-rlim 15451 df-sum 15651 df-rest 17389 df-topgen 17410 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-top 22770 df-topon 22787 df-bases 22823 df-cmp 23265 df-ovol 25367 df-vol 25368 |
This theorem is referenced by: ovolval5lem1 45953 |
Copyright terms: Public domain | W3C validator |