Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sublevolico | Structured version Visualization version GIF version |
Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
sublevolico.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sublevolico.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
sublevolico | ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublevolico.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | sublevolico.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 1, 2 | resubcld 11449 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
4 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐵 − 𝐴)) | |
5 | 3, 4 | eqled 11124 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
6 | 5 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (𝐵 − 𝐴)) |
7 | volico 43573 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
8 | 2, 1, 7 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
9 | 8 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
10 | iftrue 4471 | . . . . 5 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
11 | 10 | adantl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
12 | 9, 11 | eqtr2d 2777 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (vol‘(𝐴[,)𝐵))) |
13 | 6, 12 | breqtrd 5107 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
14 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
15 | 1, 2 | lenltd 11167 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
16 | 15 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
17 | 14, 16 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
18 | 1 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
19 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
20 | 18, 19 | suble0d 11612 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵 − 𝐴) ≤ 0 ↔ 𝐵 ≤ 𝐴)) |
21 | 17, 20 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ 0) |
22 | 8 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
23 | iffalse 4474 | . . . . 5 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
24 | 23 | adantl 483 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
25 | 22, 24 | eqtr2d 2777 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵))) |
26 | 21, 25 | breqtrd 5107 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
27 | 13, 26 | pm2.61dan 811 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ifcif 4465 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 0cc0 10917 < clt 11055 ≤ cle 11056 − cmin 11251 [,)cico 13127 volcvol 24672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-rlim 15243 df-sum 15443 df-rest 17178 df-topgen 17199 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-top 22088 df-topon 22105 df-bases 22141 df-cmp 22583 df-ovol 24673 df-vol 24674 |
This theorem is referenced by: ovolval5lem1 44240 |
Copyright terms: Public domain | W3C validator |