Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem6 Structured version   Visualization version   GIF version

Theorem dnibndlem6 36506
Description: Lemma for dnibnd 36514. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem6.1 (𝜑𝐴 ∈ ℝ)
dnibndlem6.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem6 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))

Proof of Theorem dnibndlem6
StepHypRef Expression
1 dnibndlem6.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 36495 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
32recnd 11268 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
4 dnibndlem6.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
54dnicld1 36495 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
65recnd 11268 . . . 4 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
73, 6subcld 11599 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
87abscld 15460 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
9 halfcn 12460 . . . . . 6 (1 / 2) ∈ ℂ
109a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
113, 10subcld 11599 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2)) ∈ ℂ)
1211abscld 15460 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) ∈ ℝ)
1310, 6subcld 11599 . . . 4 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
1413abscld 15460 . . 3 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
1512, 14readdcld 11269 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ∈ ℝ)
16 halfre 12459 . . . . . 6 (1 / 2) ∈ ℝ
1716a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℝ)
1817, 2jca 511 . . . 4 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ))
19 resubcl 11552 . . . 4 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
2117, 5jca 511 . . . 4 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ))
22 resubcl 11552 . . . 4 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2321, 22syl 17 . . 3 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2420, 23readdcld 11269 . 2 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
253, 6, 103jca 1128 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈ ℂ))
26 abs3dif 15355 . . 3 (((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))))
2725, 26syl 17 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))))
283, 10abssubd 15477 . . . . 5 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = (abs‘((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))))
29 rddif2 36500 . . . . . . 7 (𝐵 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
301, 29syl 17 . . . . . 6 (𝜑 → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3120, 30absidd 15446 . . . . 5 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) = ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3228, 31eqtrd 2771 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
33 rddif2 36500 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
344, 33syl 17 . . . . 5 (𝜑 → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3523, 34absidd 15446 . . . 4 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) = ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3632, 35oveq12d 7428 . . 3 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) = (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
3715, 36eqled 11343 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
388, 15, 24, 27, 37letrd 11397 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cmin 11471   / cdiv 11899  2c2 12300  cfl 13812  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260
This theorem is referenced by:  dnibndlem9  36509
  Copyright terms: Public domain W3C validator