Proof of Theorem dnibndlem6
Step | Hyp | Ref
| Expression |
1 | | dnibndlem6.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | 1 | dnicld1 34579 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
3 | 2 | recnd 10934 |
. . . 4
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ) |
4 | | dnibndlem6.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4 | dnicld1 34579 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
6 | 5 | recnd 10934 |
. . . 4
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ) |
7 | 3, 6 | subcld 11262 |
. . 3
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈
ℂ) |
8 | 7 | abscld 15076 |
. 2
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈
ℝ) |
9 | | halfcn 12118 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
11 | 3, 10 | subcld 11262 |
. . . 4
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2)) ∈
ℂ) |
12 | 11 | abscld 15076 |
. . 3
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) ∈
ℝ) |
13 | 10, 6 | subcld 11262 |
. . . 4
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ) |
14 | 13 | abscld 15076 |
. . 3
⊢ (𝜑 → (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ) |
15 | 12, 14 | readdcld 10935 |
. 2
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ∈ ℝ) |
16 | | halfre 12117 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
18 | 17, 2 | jca 511 |
. . . 4
⊢ (𝜑 → ((1 / 2) ∈ ℝ
∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)) |
19 | | resubcl 11215 |
. . . 4
⊢ (((1 / 2)
∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ) |
20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ) |
21 | 17, 5 | jca 511 |
. . . 4
⊢ (𝜑 → ((1 / 2) ∈ ℝ
∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)) |
22 | | resubcl 11215 |
. . . 4
⊢ (((1 / 2)
∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
23 | 21, 22 | syl 17 |
. . 3
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
24 | 20, 23 | readdcld 10935 |
. 2
⊢ (𝜑 → (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ) |
25 | 3, 6, 10 | 3jca 1126 |
. . 3
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈
ℂ)) |
26 | | abs3dif 14971 |
. . 3
⊢
(((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈
ℂ) → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))) |
27 | 25, 26 | syl 17 |
. 2
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))) |
28 | 3, 10 | abssubd 15093 |
. . . . 5
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = (abs‘((1 / 2)
− (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))) |
29 | | rddif2 34584 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 0 ≤
((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
30 | 1, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ≤ ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
31 | 20, 30 | absidd 15062 |
. . . . 5
⊢ (𝜑 → (abs‘((1 / 2)
− (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) = ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
32 | 28, 31 | eqtrd 2778 |
. . . 4
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
33 | | rddif2 34584 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 0 ≤
((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
34 | 4, 33 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ≤ ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
35 | 23, 34 | absidd 15062 |
. . . 4
⊢ (𝜑 → (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) = ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
36 | 32, 35 | oveq12d 7273 |
. . 3
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) = (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
37 | 15, 36 | eqled 11008 |
. 2
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ≤ (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
38 | 8, 15, 24, 27, 37 | letrd 11062 |
1
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |