Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem6 Structured version   Visualization version   GIF version

Theorem dnibndlem6 35359
Description: Lemma for dnibnd 35367. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem6.1 (𝜑𝐴 ∈ ℝ)
dnibndlem6.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem6 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))

Proof of Theorem dnibndlem6
StepHypRef Expression
1 dnibndlem6.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 35348 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
32recnd 11242 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
4 dnibndlem6.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
54dnicld1 35348 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
65recnd 11242 . . . 4 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
73, 6subcld 11571 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
87abscld 15383 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
9 halfcn 12427 . . . . . 6 (1 / 2) ∈ ℂ
109a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
113, 10subcld 11571 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2)) ∈ ℂ)
1211abscld 15383 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) ∈ ℝ)
1310, 6subcld 11571 . . . 4 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
1413abscld 15383 . . 3 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
1512, 14readdcld 11243 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ∈ ℝ)
16 halfre 12426 . . . . . 6 (1 / 2) ∈ ℝ
1716a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℝ)
1817, 2jca 513 . . . 4 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ))
19 resubcl 11524 . . . 4 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
2117, 5jca 513 . . . 4 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ))
22 resubcl 11524 . . . 4 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2321, 22syl 17 . . 3 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2420, 23readdcld 11243 . 2 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
253, 6, 103jca 1129 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈ ℂ))
26 abs3dif 15278 . . 3 (((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))))
2725, 26syl 17 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))))
283, 10abssubd 15400 . . . . 5 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = (abs‘((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))))
29 rddif2 35353 . . . . . . 7 (𝐵 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
301, 29syl 17 . . . . . 6 (𝜑 → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3120, 30absidd 15369 . . . . 5 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) = ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3228, 31eqtrd 2773 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
33 rddif2 35353 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
344, 33syl 17 . . . . 5 (𝜑 → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3523, 34absidd 15369 . . . 4 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) = ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3632, 35oveq12d 7427 . . 3 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) = (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
3715, 36eqled 11317 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
388, 15, 24, 27, 37letrd 11371 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111   + caddc 11113  cle 11249  cmin 11444   / cdiv 11871  2c2 12267  cfl 13755  abscabs 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  dnibndlem9  35362
  Copyright terms: Public domain W3C validator