Proof of Theorem dnibndlem6
| Step | Hyp | Ref
| Expression |
| 1 | | dnibndlem6.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2 | 1 | dnicld1 36495 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
| 3 | 2 | recnd 11268 |
. . . 4
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ) |
| 4 | | dnibndlem6.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | 4 | dnicld1 36495 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
| 6 | 5 | recnd 11268 |
. . . 4
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ) |
| 7 | 3, 6 | subcld 11599 |
. . 3
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈
ℂ) |
| 8 | 7 | abscld 15460 |
. 2
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈
ℝ) |
| 9 | | halfcn 12460 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
| 10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
| 11 | 3, 10 | subcld 11599 |
. . . 4
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2)) ∈
ℂ) |
| 12 | 11 | abscld 15460 |
. . 3
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) ∈
ℝ) |
| 13 | 10, 6 | subcld 11599 |
. . . 4
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ) |
| 14 | 13 | abscld 15460 |
. . 3
⊢ (𝜑 → (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ) |
| 15 | 12, 14 | readdcld 11269 |
. 2
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ∈ ℝ) |
| 16 | | halfre 12459 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ |
| 17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 18 | 17, 2 | jca 511 |
. . . 4
⊢ (𝜑 → ((1 / 2) ∈ ℝ
∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)) |
| 19 | | resubcl 11552 |
. . . 4
⊢ (((1 / 2)
∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ) |
| 21 | 17, 5 | jca 511 |
. . . 4
⊢ (𝜑 → ((1 / 2) ∈ ℝ
∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)) |
| 22 | | resubcl 11552 |
. . . 4
⊢ (((1 / 2)
∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
| 23 | 21, 22 | syl 17 |
. . 3
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
| 24 | 20, 23 | readdcld 11269 |
. 2
⊢ (𝜑 → (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ) |
| 25 | 3, 6, 10 | 3jca 1128 |
. . 3
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈
ℂ)) |
| 26 | | abs3dif 15355 |
. . 3
⊢
(((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈
ℂ) → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))) |
| 27 | 25, 26 | syl 17 |
. 2
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))) |
| 28 | 3, 10 | abssubd 15477 |
. . . . 5
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = (abs‘((1 / 2)
− (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))) |
| 29 | | rddif2 36500 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 0 ≤
((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
| 30 | 1, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ≤ ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
| 31 | 20, 30 | absidd 15446 |
. . . . 5
⊢ (𝜑 → (abs‘((1 / 2)
− (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) = ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
| 32 | 28, 31 | eqtrd 2771 |
. . . 4
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
| 33 | | rddif2 36500 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 0 ≤
((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
| 34 | 4, 33 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ≤ ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
| 35 | 23, 34 | absidd 15446 |
. . . 4
⊢ (𝜑 → (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) = ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
| 36 | 32, 35 | oveq12d 7428 |
. . 3
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) = (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
| 37 | 15, 36 | eqled 11343 |
. 2
⊢ (𝜑 →
((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2)
− (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ≤ (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
| 38 | 8, 15, 24, 27, 37 | letrd 11397 |
1
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |