Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abscvgcvg | Structured version Visualization version GIF version |
Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
abscvgcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
abscvgcvg.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
abscvgcvg.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (abs‘(𝐺‘𝑘))) |
abscvgcvg.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
abscvgcvg.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
abscvgcvg | ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscvgcvg.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | abscvgcvg.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | uzid 12698 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
5 | 4, 1 | eleqtrrdi 2848 | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
6 | abscvgcvg.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (abs‘(𝐺‘𝑘))) | |
7 | abscvgcvg.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
8 | 7 | abscld 15247 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐺‘𝑘)) ∈ ℝ) |
9 | 6, 8 | eqeltrd 2837 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
10 | abscvgcvg.5 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
11 | 1red 11077 | . 2 ⊢ (𝜑 → 1 ∈ ℝ) | |
12 | 1 | eleq2i 2828 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
13 | 6 | eqcomd 2742 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐺‘𝑘)) = (𝐹‘𝑘)) |
14 | 8, 13 | eqled 11179 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐺‘𝑘)) ≤ (𝐹‘𝑘)) |
15 | 9 | recnd 11104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
16 | 15 | mulid2d 11094 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 · (𝐹‘𝑘)) = (𝐹‘𝑘)) |
17 | 14, 16 | breqtrrd 5120 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐺‘𝑘)) ≤ (1 · (𝐹‘𝑘))) |
18 | 12, 17 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐺‘𝑘)) ≤ (1 · (𝐹‘𝑘))) |
19 | 1, 5, 9, 7, 10, 11, 18 | cvgcmpce 15629 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 dom cdm 5620 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 ℝcr 10971 1c1 10973 + caddc 10975 · cmul 10977 ≤ cle 11111 ℤcz 12420 ℤ≥cuz 12683 seqcseq 13822 abscabs 15044 ⇝ cli 15292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-ico 13186 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 |
This theorem is referenced by: mertens 15697 radcnvlem3 25680 radcnvlt2 25684 zetacvg 26270 |
Copyright terms: Public domain | W3C validator |