MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscvgcvg Structured version   Visualization version   GIF version

Theorem abscvgcvg 15771
Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
abscvgcvg.1 ๐‘ = (โ„คโ‰ฅโ€˜๐‘€)
abscvgcvg.2 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„ค)
abscvgcvg.3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐นโ€˜๐‘˜) = (absโ€˜(๐บโ€˜๐‘˜)))
abscvgcvg.4 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐บโ€˜๐‘˜) โˆˆ โ„‚)
abscvgcvg.5 (๐œ‘ โ†’ seq๐‘€( + , ๐น) โˆˆ dom โ‡ )
Assertion
Ref Expression
abscvgcvg (๐œ‘ โ†’ seq๐‘€( + , ๐บ) โˆˆ dom โ‡ )
Distinct variable groups:   ๐‘˜,๐น   ๐‘˜,๐บ   ๐‘˜,๐‘€   ๐œ‘,๐‘˜   ๐‘˜,๐‘

Proof of Theorem abscvgcvg
StepHypRef Expression
1 abscvgcvg.1 . 2 ๐‘ = (โ„คโ‰ฅโ€˜๐‘€)
2 abscvgcvg.2 . . . 4 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„ค)
3 uzid 12841 . . . 4 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
42, 3syl 17 . . 3 (๐œ‘ โ†’ ๐‘€ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
54, 1eleqtrrdi 2838 . 2 (๐œ‘ โ†’ ๐‘€ โˆˆ ๐‘)
6 abscvgcvg.3 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐นโ€˜๐‘˜) = (absโ€˜(๐บโ€˜๐‘˜)))
7 abscvgcvg.4 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐บโ€˜๐‘˜) โˆˆ โ„‚)
87abscld 15389 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (absโ€˜(๐บโ€˜๐‘˜)) โˆˆ โ„)
96, 8eqeltrd 2827 . 2 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐นโ€˜๐‘˜) โˆˆ โ„)
10 abscvgcvg.5 . 2 (๐œ‘ โ†’ seq๐‘€( + , ๐น) โˆˆ dom โ‡ )
11 1red 11219 . 2 (๐œ‘ โ†’ 1 โˆˆ โ„)
121eleq2i 2819 . . 3 (๐‘˜ โˆˆ ๐‘ โ†” ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
136eqcomd 2732 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (absโ€˜(๐บโ€˜๐‘˜)) = (๐นโ€˜๐‘˜))
148, 13eqled 11321 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (absโ€˜(๐บโ€˜๐‘˜)) โ‰ค (๐นโ€˜๐‘˜))
159recnd 11246 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐นโ€˜๐‘˜) โˆˆ โ„‚)
1615mullidd 11236 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (1 ยท (๐นโ€˜๐‘˜)) = (๐นโ€˜๐‘˜))
1714, 16breqtrrd 5169 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (absโ€˜(๐บโ€˜๐‘˜)) โ‰ค (1 ยท (๐นโ€˜๐‘˜)))
1812, 17sylan2br 594 . 2 ((๐œ‘ โˆง ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜๐‘€)) โ†’ (absโ€˜(๐บโ€˜๐‘˜)) โ‰ค (1 ยท (๐นโ€˜๐‘˜)))
191, 5, 9, 7, 10, 11, 18cvgcmpce 15770 1 (๐œ‘ โ†’ seq๐‘€( + , ๐บ) โˆˆ dom โ‡ )
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098   class class class wbr 5141  dom cdm 5669  โ€˜cfv 6537  (class class class)co 7405  โ„‚cc 11110  โ„cr 11111  1c1 11113   + caddc 11115   ยท cmul 11117   โ‰ค cle 11253  โ„คcz 12562  โ„คโ‰ฅcuz 12826  seqcseq 13972  abscabs 15187   โ‡ cli 15434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-ico 13336  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-limsup 15421  df-clim 15438  df-rlim 15439  df-sum 15639
This theorem is referenced by:  mertens  15838  radcnvlem3  26306  radcnvlt2  26310  zetacvg  26902
  Copyright terms: Public domain W3C validator