MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mudivsum Structured version   Visualization version   GIF version

Theorem mudivsum 26583
Description: Asymptotic formula for Σ𝑛𝑥, μ(𝑛) / 𝑛 = 𝑂(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mudivsum (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem mudivsum
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10907 . . 3 (⊤ → 1 ∈ ℝ)
2 reex 10893 . . . . . . 7 ℝ ∈ V
3 rpssre 12666 . . . . . . 7 + ⊆ ℝ
42, 3ssexi 5241 . . . . . 6 + ∈ V
54a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
6 fzfid 13621 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
7 rpre 12667 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
8 elfznn 13214 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
9 nndivre 11944 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
107, 8, 9syl2an 595 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
1110recnd 10934 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
12 reflcl 13444 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
1310, 12syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
1413recnd 10934 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
1511, 14subcld 11262 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
168adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
17 mucl 26195 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
1918zcnd 12356 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
2015, 19mulcld 10926 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
216, 20fsumcl 15373 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
22 rpcn 12669 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
23 rpne0 12675 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
2421, 22, 23divcld 11681 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ)
2524adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ)
26 ovexd 7290 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
27 eqidd 2739 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)))
28 eqidd 2739 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
295, 25, 26, 27, 28offval2 7531 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
303a1i 11 . . . . . 6 (⊤ → ℝ+ ⊆ ℝ)
3121adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
3222adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℂ)
3323adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ≠ 0)
3431, 32, 33absdivd 15095 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)))
35 rprege0 12674 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
36 absid 14936 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
3735, 36syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (abs‘𝑥) = 𝑥)
3837adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
3938oveq2d 7271 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥))
4034, 39eqtrd 2778 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥))
4131abscld 15076 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
42 fzfid 13621 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ∈ Fin)
4320adantlr 711 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
4443abscld 15076 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
4542, 44fsumrecl 15374 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
467adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ)
4742, 43fsumabs 15441 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))))
48 reflcl 13444 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4946, 48syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℝ)
50 1red 10907 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
5115adantlr 711 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
52 fz1ssnn 13216 . . . . . . . . . . . . . . . . . . . 20 (1...(⌊‘𝑥)) ⊆ ℕ
5352a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ⊆ ℕ)
5453sselda 3917 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
5554, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
5655zcnd 12356 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
5751, 56absmuld 15094 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) = ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))))
5851abscld 15076 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5956abscld 15076 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
6051absge0d 15084 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
6156absge0d 15084 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(μ‘𝑛)))
62 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ+)
638nnrpd 12699 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
64 rpdivcl 12684 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
6562, 63, 64syl2an 595 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
663, 65sselid 3915 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
6766, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
68 flle 13447 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
6966, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
7067, 66, 69abssubge0d 15071 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
71 fracle1 13451 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
7266, 71syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
7370, 72eqbrtrd 5092 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ 1)
74 mule1 26202 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
7554, 74syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
7658, 50, 59, 50, 60, 61, 73, 75lemul12ad 11847 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))) ≤ (1 · 1))
77 1t1e1 12065 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
7876, 77breqtrdi 5111 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))) ≤ 1)
7957, 78eqbrtrd 5092 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 1)
8042, 44, 50, 79fsumle 15439 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))1)
81 1cnd 10901 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ ℂ)
82 fsumconst 15430 . . . . . . . . . . . . . . 15 (((1...(⌊‘𝑥)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = ((♯‘(1...(⌊‘𝑥))) · 1))
8342, 81, 82syl2anc 583 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = ((♯‘(1...(⌊‘𝑥))) · 1))
84 flge1nn 13469 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
857, 84sylan 579 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
8685nnnn0d 12223 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
87 hashfz1 13988 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
8886, 87syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
8988oveq1d 7270 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((♯‘(1...(⌊‘𝑥))) · 1) = ((⌊‘𝑥) · 1))
9049recnd 10934 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℂ)
9190mulid1d 10923 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((⌊‘𝑥) · 1) = (⌊‘𝑥))
9283, 89, 913eqtrd 2782 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = (⌊‘𝑥))
9380, 92breqtrd 5096 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (⌊‘𝑥))
94 flle 13447 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
9546, 94syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ≤ 𝑥)
9645, 49, 46, 93, 95letrd 11062 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥)
9741, 45, 46, 47, 96letrd 11062 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥)
9832mulid1d 10923 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · 1) = 𝑥)
9997, 98breqtrrd 5098 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1))
100 1red 10907 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ ℝ)
10141, 100, 62ledivmuld 12754 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1 ↔ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1)))
10299, 101mpbird 256 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1)
10340, 102eqbrtrd 5092 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1)
104103adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1)
10530, 25, 1, 1, 104elo1d 15173 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
106 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
107 divrcnv 15492 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
108106, 107ax-mp 5 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0
109 rlimo1 15254 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
110108, 109mp1i 13 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
111 o1add 15251 . . . . 5 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
112105, 110, 111syl2anc 583 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
11329, 112eqeltrrd 2840 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) ∈ 𝑂(1))
114 ovexd 7290 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)) ∈ V)
11518zred 12355 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
116115, 16nndivred 11957 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
117116recnd 10934 . . . . 5 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
1186, 117fsumcl 15373 . . . 4 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
119118adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
120118adantr 480 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
121120abscld 15076 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ ℝ)
122117adantlr 711 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
12342, 32, 122fsummulc2 15424 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)))
12414, 19mulcld 10926 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) ∈ ℂ)
125124adantlr 711 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) ∈ ℂ)
12642, 43, 125fsumadd 15380 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))))
12711adantlr 711 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
12814adantlr 711 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
129127, 128npcand 11266 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) = (𝑥 / 𝑛))
130129oveq1d 7270 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((𝑥 / 𝑛) · (μ‘𝑛)))
13151, 128, 56adddird 10931 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))))
13232adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
13354nnrpd 12699 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
134 rpcnne0 12677 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
135133, 134syl 17 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
136 div23 11582 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (μ‘𝑛)) / 𝑛) = ((𝑥 / 𝑛) · (μ‘𝑛)))
137 divass 11581 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (μ‘𝑛)) / 𝑛) = (𝑥 · ((μ‘𝑛) / 𝑛)))
138136, 137eqtr3d 2780 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛)))
139132, 56, 135, 138syl3anc 1369 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛)))
140130, 131, 1393eqtr3d 2786 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (𝑥 · ((μ‘𝑛) / 𝑛)))
141140sumeq2dv 15343 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)))
142 eqidd 2739 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → (μ‘𝑛) = (μ‘𝑛))
143 ssrab2 4009 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
144 simprr 769 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
145143, 144sselid 3915 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
146145, 17syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℤ)
147146zcnd 12356 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℂ)
148142, 46, 147dvdsflsumcom 26242 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛))
1491473impb 1113 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (μ‘𝑛) ∈ ℂ)
150149mulid1d 10923 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → ((μ‘𝑛) · 1) = (μ‘𝑛))
1511502sumeq2dv 15345 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · 1) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛))
152 eqidd 2739 . . . . . . . . . . . . . 14 (𝑘 = 1 → 1 = 1)
153 nnuz 12550 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
15485, 153eleqtrdi 2849 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘1))
155 eluzfz1 13192 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
156154, 155syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ (1...(⌊‘𝑥)))
157 1cnd 10901 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
158152, 42, 53, 156, 157musumsum 26246 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · 1) = 1)
159151, 158eqtr3d 2780 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛) = 1)
160 fzfid 13621 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
161 fsumconst 15430 . . . . . . . . . . . . . . 15 (((1...(⌊‘(𝑥 / 𝑛))) ∈ Fin ∧ (μ‘𝑛) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)))
162160, 56, 161syl2anc 583 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)))
163 rprege0 12674 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ+ → ((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)))
164 flge0nn0 13468 . . . . . . . . . . . . . . . 16 (((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)) → (⌊‘(𝑥 / 𝑛)) ∈ ℕ0)
165 hashfz1 13988 . . . . . . . . . . . . . . . 16 ((⌊‘(𝑥 / 𝑛)) ∈ ℕ0 → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛)))
16665, 163, 164, 1654syl 19 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛)))
167166oveq1d 7270 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
168162, 167eqtrd 2778 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
169168sumeq2dv 15343 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
170148, 159, 1693eqtr3rd 2787 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) = 1)
171170oveq2d 7271 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
172126, 141, 1713eqtr3d 2786 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
173123, 172eqtrd 2778 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
174173oveq1d 7270 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥))
175120, 32, 33divcan3d 11686 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛))
176 rpcnne0 12677 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177176adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
178 divdir 11588 . . . . . . . 8 ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
17931, 81, 177, 178syl3anc 1369 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
180174, 175, 1793eqtr3d 2786 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
181180fveq2d 6760 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
182121, 181eqled 11008 . . . 4 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
183182adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
1841, 113, 114, 119, 183o1le 15292 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
185184mptru 1546 1 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  f cof 7509  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  cfl 13438  chash 13972  abscabs 14873  𝑟 crli 15122  𝑂(1)co1 15123  Σcsu 15325  cdvds 15891  μcmu 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-mu 26155
This theorem is referenced by:  mulogsumlem  26584  mulog2sumlem3  26589  selberglem1  26598
  Copyright terms: Public domain W3C validator