MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mudivsum Structured version   Visualization version   GIF version

Theorem mudivsum 27448
Description: Asymptotic formula for Σ𝑛𝑥, μ(𝑛) / 𝑛 = 𝑂(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mudivsum (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem mudivsum
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11182 . . 3 (⊤ → 1 ∈ ℝ)
2 reex 11166 . . . . . . 7 ℝ ∈ V
3 rpssre 12966 . . . . . . 7 + ⊆ ℝ
42, 3ssexi 5280 . . . . . 6 + ∈ V
54a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
6 fzfid 13945 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
7 rpre 12967 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
8 elfznn 13521 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
9 nndivre 12234 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
107, 8, 9syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
1110recnd 11209 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
12 reflcl 13765 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
1310, 12syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
1413recnd 11209 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
1511, 14subcld 11540 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
168adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
17 mucl 27058 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
1918zcnd 12646 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
2015, 19mulcld 11201 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
216, 20fsumcl 15706 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
22 rpcn 12969 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
23 rpne0 12975 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
2421, 22, 23divcld 11965 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ)
2524adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ)
26 ovexd 7425 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
27 eqidd 2731 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)))
28 eqidd 2731 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
295, 25, 26, 27, 28offval2 7676 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
303a1i 11 . . . . . 6 (⊤ → ℝ+ ⊆ ℝ)
3121adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
3222adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℂ)
3323adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ≠ 0)
3431, 32, 33absdivd 15431 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)))
35 rprege0 12974 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
36 absid 15269 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
3735, 36syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (abs‘𝑥) = 𝑥)
3837adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
3938oveq2d 7406 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥))
4034, 39eqtrd 2765 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥))
4131abscld 15412 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
42 fzfid 13945 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ∈ Fin)
4320adantlr 715 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
4443abscld 15412 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
4542, 44fsumrecl 15707 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
467adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ)
4742, 43fsumabs 15774 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))))
48 reflcl 13765 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4946, 48syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℝ)
50 1red 11182 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
5115adantlr 715 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
52 fz1ssnn 13523 . . . . . . . . . . . . . . . . . . . 20 (1...(⌊‘𝑥)) ⊆ ℕ
5352a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ⊆ ℕ)
5453sselda 3949 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
5554, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
5655zcnd 12646 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
5751, 56absmuld 15430 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) = ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))))
5851abscld 15412 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5956abscld 15412 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
6051absge0d 15420 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
6156absge0d 15420 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(μ‘𝑛)))
62 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ+)
638nnrpd 13000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
64 rpdivcl 12985 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
6562, 63, 64syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
663, 65sselid 3947 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
6766, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
68 flle 13768 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
6966, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
7067, 66, 69abssubge0d 15407 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
71 fracle1 13772 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
7266, 71syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
7370, 72eqbrtrd 5132 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ 1)
74 mule1 27065 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
7554, 74syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
7658, 50, 59, 50, 60, 61, 73, 75lemul12ad 12132 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))) ≤ (1 · 1))
77 1t1e1 12350 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
7876, 77breqtrdi 5151 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))) ≤ 1)
7957, 78eqbrtrd 5132 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 1)
8042, 44, 50, 79fsumle 15772 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))1)
81 1cnd 11176 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ ℂ)
82 fsumconst 15763 . . . . . . . . . . . . . . 15 (((1...(⌊‘𝑥)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = ((♯‘(1...(⌊‘𝑥))) · 1))
8342, 81, 82syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = ((♯‘(1...(⌊‘𝑥))) · 1))
84 flge1nn 13790 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
857, 84sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
8685nnnn0d 12510 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
87 hashfz1 14318 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
8886, 87syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
8988oveq1d 7405 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((♯‘(1...(⌊‘𝑥))) · 1) = ((⌊‘𝑥) · 1))
9049recnd 11209 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℂ)
9190mulridd 11198 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((⌊‘𝑥) · 1) = (⌊‘𝑥))
9283, 89, 913eqtrd 2769 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = (⌊‘𝑥))
9380, 92breqtrd 5136 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (⌊‘𝑥))
94 flle 13768 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
9546, 94syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ≤ 𝑥)
9645, 49, 46, 93, 95letrd 11338 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥)
9741, 45, 46, 47, 96letrd 11338 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥)
9832mulridd 11198 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · 1) = 𝑥)
9997, 98breqtrrd 5138 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1))
100 1red 11182 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ ℝ)
10141, 100, 62ledivmuld 13055 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1 ↔ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1)))
10299, 101mpbird 257 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1)
10340, 102eqbrtrd 5132 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1)
104103adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1)
10530, 25, 1, 1, 104elo1d 15509 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
106 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
107 divrcnv 15825 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
108106, 107ax-mp 5 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0
109 rlimo1 15590 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
110108, 109mp1i 13 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
111 o1add 15587 . . . . 5 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
112105, 110, 111syl2anc 584 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
11329, 112eqeltrrd 2830 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) ∈ 𝑂(1))
114 ovexd 7425 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)) ∈ V)
11518zred 12645 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
116115, 16nndivred 12247 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
117116recnd 11209 . . . . 5 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
1186, 117fsumcl 15706 . . . 4 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
119118adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
120118adantr 480 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
121120abscld 15412 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ ℝ)
122117adantlr 715 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
12342, 32, 122fsummulc2 15757 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)))
12414, 19mulcld 11201 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) ∈ ℂ)
125124adantlr 715 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) ∈ ℂ)
12642, 43, 125fsumadd 15713 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))))
12711adantlr 715 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
12814adantlr 715 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
129127, 128npcand 11544 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) = (𝑥 / 𝑛))
130129oveq1d 7405 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((𝑥 / 𝑛) · (μ‘𝑛)))
13151, 128, 56adddird 11206 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))))
13232adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
13354nnrpd 13000 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
134 rpcnne0 12977 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
135133, 134syl 17 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
136 div23 11863 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (μ‘𝑛)) / 𝑛) = ((𝑥 / 𝑛) · (μ‘𝑛)))
137 divass 11862 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (μ‘𝑛)) / 𝑛) = (𝑥 · ((μ‘𝑛) / 𝑛)))
138136, 137eqtr3d 2767 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛)))
139132, 56, 135, 138syl3anc 1373 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛)))
140130, 131, 1393eqtr3d 2773 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (𝑥 · ((μ‘𝑛) / 𝑛)))
141140sumeq2dv 15675 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)))
142 eqidd 2731 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → (μ‘𝑛) = (μ‘𝑛))
143 ssrab2 4046 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
144 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
145143, 144sselid 3947 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
146145, 17syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℤ)
147146zcnd 12646 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℂ)
148142, 46, 147dvdsflsumcom 27105 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛))
1491473impb 1114 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (μ‘𝑛) ∈ ℂ)
150149mulridd 11198 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → ((μ‘𝑛) · 1) = (μ‘𝑛))
1511502sumeq2dv 15678 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · 1) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛))
152 eqidd 2731 . . . . . . . . . . . . . 14 (𝑘 = 1 → 1 = 1)
153 nnuz 12843 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
15485, 153eleqtrdi 2839 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘1))
155 eluzfz1 13499 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
156154, 155syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ (1...(⌊‘𝑥)))
157 1cnd 11176 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
158152, 42, 53, 156, 157musumsum 27109 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · 1) = 1)
159151, 158eqtr3d 2767 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛) = 1)
160 fzfid 13945 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
161 fsumconst 15763 . . . . . . . . . . . . . . 15 (((1...(⌊‘(𝑥 / 𝑛))) ∈ Fin ∧ (μ‘𝑛) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)))
162160, 56, 161syl2anc 584 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)))
163 rprege0 12974 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ+ → ((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)))
164 flge0nn0 13789 . . . . . . . . . . . . . . . 16 (((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)) → (⌊‘(𝑥 / 𝑛)) ∈ ℕ0)
165 hashfz1 14318 . . . . . . . . . . . . . . . 16 ((⌊‘(𝑥 / 𝑛)) ∈ ℕ0 → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛)))
16665, 163, 164, 1654syl 19 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛)))
167166oveq1d 7405 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
168162, 167eqtrd 2765 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
169168sumeq2dv 15675 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
170148, 159, 1693eqtr3rd 2774 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) = 1)
171170oveq2d 7406 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
172126, 141, 1713eqtr3d 2773 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
173123, 172eqtrd 2765 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
174173oveq1d 7405 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥))
175120, 32, 33divcan3d 11970 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛))
176 rpcnne0 12977 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177176adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
178 divdir 11869 . . . . . . . 8 ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
17931, 81, 177, 178syl3anc 1373 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
180174, 175, 1793eqtr3d 2773 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
181180fveq2d 6865 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
182121, 181eqled 11284 . . . 4 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
183182adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
1841, 113, 114, 119, 183o1le 15626 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
185184mptru 1547 1 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  f cof 7654  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  cfl 13759  chash 14302  abscabs 15207  𝑟 crli 15458  𝑂(1)co1 15459  Σcsu 15659  cdvds 16229  μcmu 27012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-mu 27018
This theorem is referenced by:  mulogsumlem  27449  mulog2sumlem3  27454  selberglem1  27463
  Copyright terms: Public domain W3C validator