Step | Hyp | Ref
| Expression |
1 | | 1red 10976 |
. . 3
⊢ (⊤
→ 1 ∈ ℝ) |
2 | | reex 10962 |
. . . . . . 7
⊢ ℝ
∈ V |
3 | | rpssre 12737 |
. . . . . . 7
⊢
ℝ+ ⊆ ℝ |
4 | 2, 3 | ssexi 5246 |
. . . . . 6
⊢
ℝ+ ∈ V |
5 | 4 | a1i 11 |
. . . . 5
⊢ (⊤
→ ℝ+ ∈ V) |
6 | | fzfid 13693 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (1...(⌊‘𝑥)) ∈ Fin) |
7 | | rpre 12738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
8 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
9 | | nndivre 12014 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ) |
10 | 7, 8, 9 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
11 | 10 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) |
12 | | reflcl 13516 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ) |
13 | 10, 12 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℝ) |
14 | 13 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℂ) |
15 | 11, 14 | subcld 11332 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ) |
16 | 8 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
17 | | mucl 26290 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(μ‘𝑛) ∈
ℤ) |
18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℤ) |
19 | 18 | zcnd 12427 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℂ) |
20 | 15, 19 | mulcld 10995 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ) |
21 | 6, 20 | fsumcl 15445 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ) |
22 | | rpcn 12740 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
23 | | rpne0 12746 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
24 | 21, 22, 23 | divcld 11751 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ) |
25 | 24 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ) |
26 | | ovexd 7310 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (1 / 𝑥) ∈ V) |
27 | | eqidd 2739 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥))) |
28 | | eqidd 2739 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) |
29 | 5, 25, 26, 27, 28 | offval2 7553 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) = (𝑥 ∈ ℝ+ ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))) |
30 | 3 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ℝ+ ⊆ ℝ) |
31 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ) |
32 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
𝑥 ∈
ℂ) |
33 | 23 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
𝑥 ≠ 0) |
34 | 31, 32, 33 | absdivd 15167 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥))) |
35 | | rprege0 12745 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
36 | | absid 15008 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) → (abs‘𝑥) = 𝑥) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (abs‘𝑥) =
𝑥) |
38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘𝑥) = 𝑥) |
39 | 38 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥)) |
40 | 34, 39 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥)) |
41 | 31 | abscld 15148 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ) |
42 | | fzfid 13693 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(1...(⌊‘𝑥))
∈ Fin) |
43 | 20 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ) |
44 | 43 | abscld 15148 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈
ℝ) |
45 | 42, 44 | fsumrecl 15446 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ) |
46 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
𝑥 ∈
ℝ) |
47 | 42, 43 | fsumabs 15513 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)))) |
48 | | reflcl 13516 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ∈
ℝ) |
49 | 46, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(⌊‘𝑥) ∈
ℝ) |
50 | | 1red 10976 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
51 | 15 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ) |
52 | | fz1ssnn 13287 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...(⌊‘𝑥)) ⊆ ℕ |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(1...(⌊‘𝑥))
⊆ ℕ) |
54 | 53 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
55 | 54, 17 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℤ) |
56 | 55 | zcnd 12427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℂ) |
57 | 51, 56 | absmuld 15166 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) = ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛)))) |
58 | 51 | abscld 15148 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛)))) ∈
ℝ) |
59 | 56 | abscld 15148 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(μ‘𝑛)) ∈ ℝ) |
60 | 51 | absge0d 15156 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))) |
61 | 56 | absge0d 15156 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘(μ‘𝑛))) |
62 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
𝑥 ∈
ℝ+) |
63 | 8 | nnrpd 12770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
64 | | rpdivcl 12755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
65 | 62, 63, 64 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
66 | 3, 65 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
67 | 66, 12 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℝ) |
68 | | flle 13519 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛)) |
69 | 66, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ≤ (𝑥 / 𝑛)) |
70 | 67, 66, 69 | abssubge0d 15143 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛)))) = ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) |
71 | | fracle1 13523 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1) |
72 | 66, 71 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1) |
73 | 70, 72 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛)))) ≤ 1) |
74 | | mule1 26297 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ →
(abs‘(μ‘𝑛))
≤ 1) |
75 | 54, 74 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(μ‘𝑛)) ≤ 1) |
76 | 58, 50, 59, 50, 60, 61, 73, 75 | lemul12ad 11917 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛)))) ·
(abs‘(μ‘𝑛)))
≤ (1 · 1)) |
77 | | 1t1e1 12135 |
. . . . . . . . . . . . . . . 16
⊢ (1
· 1) = 1 |
78 | 76, 77 | breqtrdi 5115 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛)))) ·
(abs‘(μ‘𝑛)))
≤ 1) |
79 | 57, 78 | eqbrtrd 5096 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(((𝑥 /
𝑛) −
(⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 1) |
80 | 42, 44, 50, 79 | fsumle 15511 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))1) |
81 | | 1cnd 10970 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) → 1
∈ ℂ) |
82 | | fsumconst 15502 |
. . . . . . . . . . . . . . 15
⊢
(((1...(⌊‘𝑥)) ∈ Fin ∧ 1 ∈ ℂ) →
Σ𝑛 ∈
(1...(⌊‘𝑥))1 =
((♯‘(1...(⌊‘𝑥))) · 1)) |
83 | 42, 81, 82 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))1 =
((♯‘(1...(⌊‘𝑥))) · 1)) |
84 | | flge1nn 13541 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ) |
85 | 7, 84 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(⌊‘𝑥) ∈
ℕ) |
86 | 85 | nnnn0d 12293 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
87 | | hashfz1 14060 |
. . . . . . . . . . . . . . . 16
⊢
((⌊‘𝑥)
∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥)) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥)) |
89 | 88 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((♯‘(1...(⌊‘𝑥))) · 1) = ((⌊‘𝑥) · 1)) |
90 | 49 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(⌊‘𝑥) ∈
ℂ) |
91 | 90 | mulid1d 10992 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((⌊‘𝑥) ·
1) = (⌊‘𝑥)) |
92 | 83, 89, 91 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))1 =
(⌊‘𝑥)) |
93 | 80, 92 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (⌊‘𝑥)) |
94 | | flle 13519 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ≤
𝑥) |
95 | 46, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(⌊‘𝑥) ≤
𝑥) |
96 | 45, 49, 46, 93, 95 | letrd 11132 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥) |
97 | 41, 45, 46, 47, 96 | letrd 11132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥) |
98 | 32 | mulid1d 10992 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(𝑥 · 1) = 𝑥) |
99 | 97, 98 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1)) |
100 | | 1red 10976 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) → 1
∈ ℝ) |
101 | 41, 100, 62 | ledivmuld 12825 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(((abs‘Σ𝑛
∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1 ↔ (abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1))) |
102 | 99, 101 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1) |
103 | 40, 102 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1) |
104 | 103 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1) |
105 | 30, 25, 1, 1, 104 | elo1d 15245 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1)) |
106 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
107 | | divrcnv 15564 |
. . . . . . 7
⊢ (1 ∈
ℂ → (𝑥 ∈
ℝ+ ↦ (1 / 𝑥)) ⇝𝑟
0) |
108 | 106, 107 | ax-mp 5 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ (1 / 𝑥))
⇝𝑟 0 |
109 | | rlimo1 15326 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
↦ (1 / 𝑥))
⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) ∈
𝑂(1)) |
110 | 108, 109 | mp1i 13 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1)) |
111 | | o1add 15323 |
. . . . 5
⊢ (((𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+
↦ (1 / 𝑥)) ∈
𝑂(1)) → ((𝑥
∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) ∈
𝑂(1)) |
112 | 105, 110,
111 | syl2anc 584 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) ∈
𝑂(1)) |
113 | 29, 112 | eqeltrrd 2840 |
. . 3
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) ∈ 𝑂(1)) |
114 | | ovexd 7310 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)) ∈ V) |
115 | 18 | zred 12426 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℝ) |
116 | 115, 16 | nndivred 12027 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℝ) |
117 | 116 | recnd 11003 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℂ) |
118 | 6, 117 | fsumcl 15445 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ) |
119 | 118 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ) |
120 | 118 | adantr 481 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ) |
121 | 120 | abscld 15148 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ ℝ) |
122 | 117 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℂ) |
123 | 42, 32, 122 | fsummulc2 15496 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(𝑥 · Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛))) |
124 | 14, 19 | mulcld 10995 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘(𝑥 /
𝑛)) ·
(μ‘𝑛)) ∈
ℂ) |
125 | 124 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘(𝑥 /
𝑛)) ·
(μ‘𝑛)) ∈
ℂ) |
126 | 42, 43, 125 | fsumadd 15452 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))) |
127 | 11 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) |
128 | 14 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℂ) |
129 | 127, 128 | npcand 11336 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) = (𝑥 / 𝑛)) |
130 | 129 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((𝑥 / 𝑛) · (μ‘𝑛))) |
131 | 51, 128, 56 | adddird 11000 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))) |
132 | 32 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
133 | 54 | nnrpd 12770 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
134 | | rpcnne0 12748 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℝ+
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
135 | 133, 134 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
136 | | div23 11652 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧
(μ‘𝑛) ∈
ℂ ∧ (𝑛 ∈
ℂ ∧ 𝑛 ≠ 0))
→ ((𝑥 ·
(μ‘𝑛)) / 𝑛) = ((𝑥 / 𝑛) · (μ‘𝑛))) |
137 | | divass 11651 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧
(μ‘𝑛) ∈
ℂ ∧ (𝑛 ∈
ℂ ∧ 𝑛 ≠ 0))
→ ((𝑥 ·
(μ‘𝑛)) / 𝑛) = (𝑥 · ((μ‘𝑛) / 𝑛))) |
138 | 136, 137 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧
(μ‘𝑛) ∈
ℂ ∧ (𝑛 ∈
ℂ ∧ 𝑛 ≠ 0))
→ ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛))) |
139 | 132, 56, 135, 138 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛))) |
140 | 130, 131,
139 | 3eqtr3d 2786 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (𝑥 · ((μ‘𝑛) / 𝑛))) |
141 | 140 | sumeq2dv 15415 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛))) |
142 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 · 𝑚) → (μ‘𝑛) = (μ‘𝑛)) |
143 | | ssrab2 4013 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ⊆ ℕ |
144 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧
(𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) |
145 | 143, 144 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧
(𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑛 ∈ ℕ) |
146 | 145, 17 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧
(𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (μ‘𝑛) ∈ ℤ) |
147 | 146 | zcnd 12427 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧
(𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (μ‘𝑛) ∈ ℂ) |
148 | 142, 46, 147 | dvdsflsumcom 26337 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛)) |
149 | 147 | 3impb 1114 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) → (μ‘𝑛) ∈ ℂ) |
150 | 149 | mulid1d 10992 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) → ((μ‘𝑛) · 1) = (μ‘𝑛)) |
151 | 150 | 2sumeq2dv 15417 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((μ‘𝑛) · 1) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (μ‘𝑛)) |
152 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → 1 =
1) |
153 | | nnuz 12621 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
154 | 85, 153 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(⌊‘𝑥) ∈
(ℤ≥‘1)) |
155 | | eluzfz1 13263 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘𝑥)
∈ (ℤ≥‘1) → 1 ∈
(1...(⌊‘𝑥))) |
156 | 154, 155 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) → 1
∈ (1...(⌊‘𝑥))) |
157 | | 1cnd 10970 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℂ) |
158 | 152, 42, 53, 156, 157 | musumsum 26341 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((μ‘𝑛) · 1) = 1) |
159 | 151, 158 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (μ‘𝑛) = 1) |
160 | | fzfid 13693 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin) |
161 | | fsumconst 15502 |
. . . . . . . . . . . . . . 15
⊢
(((1...(⌊‘(𝑥 / 𝑛))) ∈ Fin ∧ (μ‘𝑛) ∈ ℂ) →
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(μ‘𝑛) =
((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛))) |
162 | 160, 56, 161 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(μ‘𝑛) =
((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛))) |
163 | | rprege0 12745 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → ((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛))) |
164 | | flge0nn0 13540 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)) → (⌊‘(𝑥 / 𝑛)) ∈
ℕ0) |
165 | | hashfz1 14060 |
. . . . . . . . . . . . . . . 16
⊢
((⌊‘(𝑥 /
𝑛)) ∈
ℕ0 → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛))) |
166 | 65, 163, 164, 165 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛))) |
167 | 166 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) |
168 | 162, 167 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(μ‘𝑛) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) |
169 | 168 | sumeq2dv 15415 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) |
170 | 148, 159,
169 | 3eqtr3rd 2787 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) = 1) |
171 | 170 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1)) |
172 | 126, 141,
171 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1)) |
173 | 123, 172 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(𝑥 · Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1)) |
174 | 173 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((𝑥 · Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥)) |
175 | 120, 32, 33 | divcan3d 11756 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((𝑥 · Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) |
176 | | rpcnne0 12748 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
177 | 176 | adantr 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) |
178 | | divdir 11658 |
. . . . . . . 8
⊢
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ ∧ 1 ∈ ℂ
∧ (𝑥 ∈ ℂ
∧ 𝑥 ≠ 0)) →
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) |
179 | 31, 81, 177, 178 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) |
180 | 174, 175,
179 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) |
181 | 180 | fveq2d 6778 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))) |
182 | 121, 181 | eqled 11078 |
. . . 4
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))) |
183 | 182 | adantl 482 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))) |
184 | 1, 113, 114, 119, 183 | o1le 15364 |
. 2
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)) |
185 | 184 | mptru 1546 |
1
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) |