| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ppip1le | Structured version Visualization version GIF version | ||
| Description: The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| ppip1le | ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flcl 13812 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 2 | zre 12592 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℝ) | |
| 3 | peano2re 11408 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → ((⌊‘𝐴) + 1) ∈ ℝ) |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
| 6 | ppicl 27093 | . . . . . . 7 ⊢ (((⌊‘𝐴) + 1) ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) |
| 8 | 7 | nn0red 12563 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℝ) |
| 9 | ppiprm 27113 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = ((π‘(⌊‘𝐴)) + 1)) | |
| 10 | 8, 9 | eqled 11338 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
| 11 | ppinprm 27114 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = (π‘(⌊‘𝐴))) | |
| 12 | ppicl 27093 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → (π‘(⌊‘𝐴)) ∈ ℕ0) | |
| 13 | 2, 12 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℕ0) |
| 14 | 13 | nn0red 12563 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℝ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ∈ ℝ) |
| 16 | 15 | lep1d 12173 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
| 17 | 11, 16 | eqbrtrd 5141 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
| 18 | 10, 17 | pm2.61dan 812 | . . 3 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
| 19 | 1, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
| 20 | 1z 12622 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 21 | fladdz 13842 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) | |
| 22 | 20, 21 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) |
| 23 | 22 | fveq2d 6880 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘((⌊‘𝐴) + 1))) |
| 24 | peano2re 11408 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 25 | ppifl 27122 | . . . 4 ⊢ ((𝐴 + 1) ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) | |
| 26 | 24, 25 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) |
| 27 | 23, 26 | eqtr3d 2772 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) = (π‘(𝐴 + 1))) |
| 28 | ppifl 27122 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | |
| 29 | 28 | oveq1d 7420 | . 2 ⊢ (𝐴 ∈ ℝ → ((π‘(⌊‘𝐴)) + 1) = ((π‘𝐴) + 1)) |
| 30 | 19, 27, 29 | 3brtr3d 5150 | 1 ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 ≤ cle 11270 ℕ0cn0 12501 ℤcz 12588 ⌊cfl 13807 ℙcprime 16690 πcppi 27056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-icc 13369 df-fz 13525 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 df-ppi 27062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |