MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppip1le Structured version   Visualization version   GIF version

Theorem ppip1le 26215
Description: The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppip1le (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π𝐴) + 1))

Proof of Theorem ppip1le
StepHypRef Expression
1 flcl 13443 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
2 zre 12253 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℝ)
3 peano2re 11078 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
42, 3syl 17 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → ((⌊‘𝐴) + 1) ∈ ℝ)
54adantr 480 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → ((⌊‘𝐴) + 1) ∈ ℝ)
6 ppicl 26185 . . . . . . 7 (((⌊‘𝐴) + 1) ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0)
75, 6syl 17 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0)
87nn0red 12224 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℝ)
9 ppiprm 26205 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = ((π‘(⌊‘𝐴)) + 1))
108, 9eqled 11008 . . . 4 (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1))
11 ppinprm 26206 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = (π‘(⌊‘𝐴)))
12 ppicl 26185 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℝ → (π‘(⌊‘𝐴)) ∈ ℕ0)
132, 12syl 17 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℕ0)
1413nn0red 12224 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℝ)
1514adantr 480 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ∈ ℝ)
1615lep1d 11836 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ≤ ((π‘(⌊‘𝐴)) + 1))
1711, 16eqbrtrd 5092 . . . 4 (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1))
1810, 17pm2.61dan 809 . . 3 ((⌊‘𝐴) ∈ ℤ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1))
191, 18syl 17 . 2 (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1))
20 1z 12280 . . . . 5 1 ∈ ℤ
21 fladdz 13473 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1))
2220, 21mpan2 687 . . . 4 (𝐴 ∈ ℝ → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1))
2322fveq2d 6760 . . 3 (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘((⌊‘𝐴) + 1)))
24 peano2re 11078 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
25 ppifl 26214 . . . 4 ((𝐴 + 1) ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1)))
2624, 25syl 17 . . 3 (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1)))
2723, 26eqtr3d 2780 . 2 (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) = (π‘(𝐴 + 1)))
28 ppifl 26214 . . 3 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
2928oveq1d 7270 . 2 (𝐴 ∈ ℝ → ((π‘(⌊‘𝐴)) + 1) = ((π𝐴) + 1))
3019, 27, 293brtr3d 5101 1 (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  cle 10941  0cn0 12163  cz 12249  cfl 13438  cprime 16304  πcppi 26148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-icc 13015  df-fz 13169  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305  df-ppi 26154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator