![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppip1le | Structured version Visualization version GIF version |
Description: The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
ppip1le | ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 13832 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | zre 12615 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℝ) | |
3 | peano2re 11432 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → ((⌊‘𝐴) + 1) ∈ ℝ) |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
6 | ppicl 27189 | . . . . . . 7 ⊢ (((⌊‘𝐴) + 1) ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) |
8 | 7 | nn0red 12586 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℝ) |
9 | ppiprm 27209 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = ((π‘(⌊‘𝐴)) + 1)) | |
10 | 8, 9 | eqled 11362 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
11 | ppinprm 27210 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = (π‘(⌊‘𝐴))) | |
12 | ppicl 27189 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → (π‘(⌊‘𝐴)) ∈ ℕ0) | |
13 | 2, 12 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℕ0) |
14 | 13 | nn0red 12586 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℝ) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ∈ ℝ) |
16 | 15 | lep1d 12197 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
17 | 11, 16 | eqbrtrd 5170 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
18 | 10, 17 | pm2.61dan 813 | . . 3 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
19 | 1, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
20 | 1z 12645 | . . . . 5 ⊢ 1 ∈ ℤ | |
21 | fladdz 13862 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) | |
22 | 20, 21 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) |
23 | 22 | fveq2d 6911 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘((⌊‘𝐴) + 1))) |
24 | peano2re 11432 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
25 | ppifl 27218 | . . . 4 ⊢ ((𝐴 + 1) ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) |
27 | 23, 26 | eqtr3d 2777 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) = (π‘(𝐴 + 1))) |
28 | ppifl 27218 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | |
29 | 28 | oveq1d 7446 | . 2 ⊢ (𝐴 ∈ ℝ → ((π‘(⌊‘𝐴)) + 1) = ((π‘𝐴) + 1)) |
30 | 19, 27, 29 | 3brtr3d 5179 | 1 ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 ≤ cle 11294 ℕ0cn0 12524 ℤcz 12611 ⌊cfl 13827 ℙcprime 16705 πcppi 27152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-icc 13391 df-fz 13545 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 df-ppi 27158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |