Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ppip1le | Structured version Visualization version GIF version |
Description: The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
ppip1le | ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 13525 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | zre 12333 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℝ) | |
3 | peano2re 11158 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → ((⌊‘𝐴) + 1) ∈ ℝ) |
5 | 4 | adantr 481 | . . . . . . 7 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
6 | ppicl 26290 | . . . . . . 7 ⊢ (((⌊‘𝐴) + 1) ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) |
8 | 7 | nn0red 12304 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℝ) |
9 | ppiprm 26310 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = ((π‘(⌊‘𝐴)) + 1)) | |
10 | 8, 9 | eqled 11088 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
11 | ppinprm 26311 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = (π‘(⌊‘𝐴))) | |
12 | ppicl 26290 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → (π‘(⌊‘𝐴)) ∈ ℕ0) | |
13 | 2, 12 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℕ0) |
14 | 13 | nn0red 12304 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℝ) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ∈ ℝ) |
16 | 15 | lep1d 11916 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
17 | 11, 16 | eqbrtrd 5095 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
18 | 10, 17 | pm2.61dan 810 | . . 3 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
19 | 1, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
20 | 1z 12360 | . . . . 5 ⊢ 1 ∈ ℤ | |
21 | fladdz 13555 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) | |
22 | 20, 21 | mpan2 688 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) |
23 | 22 | fveq2d 6770 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘((⌊‘𝐴) + 1))) |
24 | peano2re 11158 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
25 | ppifl 26319 | . . . 4 ⊢ ((𝐴 + 1) ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) |
27 | 23, 26 | eqtr3d 2780 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) = (π‘(𝐴 + 1))) |
28 | ppifl 26319 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | |
29 | 28 | oveq1d 7282 | . 2 ⊢ (𝐴 ∈ ℝ → ((π‘(⌊‘𝐴)) + 1) = ((π‘𝐴) + 1)) |
30 | 19, 27, 29 | 3brtr3d 5104 | 1 ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 ℝcr 10880 1c1 10882 + caddc 10884 ≤ cle 11020 ℕ0cn0 12243 ℤcz 12329 ⌊cfl 13520 ℙcprime 16386 πcppi 26253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-oadd 8288 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-icc 13096 df-fz 13250 df-fl 13522 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-dvds 15974 df-prm 16387 df-ppi 26259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |