| Step | Hyp | Ref
| Expression |
| 1 | | esplyfval2.i |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 2 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → 𝐼 ∈ Fin) |
| 3 | | elpwi 4556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ 𝒫 𝐼 → 𝑐 ⊆ 𝐼) |
| 4 | 3 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → 𝑐 ⊆ 𝐼) |
| 5 | 2, 4 | ssfid 9160 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → 𝑐 ∈ Fin) |
| 6 | | hashcl 14265 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ Fin →
(♯‘𝑐) ∈
ℕ0) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝑐) ∈
ℕ0) |
| 8 | 7 | nn0red 12450 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝑐) ∈ ℝ) |
| 9 | | hashcl 14265 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ Fin →
(♯‘𝐼) ∈
ℕ0) |
| 10 | 1, 9 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ0) |
| 11 | 10 | nn0red 12450 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝐼) ∈
ℝ) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝐼) ∈ ℝ) |
| 13 | | esplyfval2.k |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ (ℕ0 ∖
(0...(♯‘𝐼)))) |
| 14 | 13 | eldifad 3910 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 15 | 14 | nn0red 12450 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → 𝐾 ∈ ℝ) |
| 17 | | hashss 14318 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ Fin ∧ 𝑐 ⊆ 𝐼) → (♯‘𝑐) ≤ (♯‘𝐼)) |
| 18 | 2, 4, 17 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝑐) ≤ (♯‘𝐼)) |
| 19 | 10 | nn0zd 12500 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘𝐼) ∈
ℤ) |
| 20 | | nn0diffz0 32781 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐼)
∈ ℕ0 → (ℕ0 ∖
(0...(♯‘𝐼))) =
(ℤ≥‘((♯‘𝐼) + 1))) |
| 21 | 10, 20 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℕ0
∖ (0...(♯‘𝐼))) =
(ℤ≥‘((♯‘𝐼) + 1))) |
| 22 | 13, 21 | eleqtrd 2835 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘((♯‘𝐼) + 1))) |
| 23 | | eluzp1l 12765 |
. . . . . . . . . . . . . . 15
⊢
(((♯‘𝐼)
∈ ℤ ∧ 𝐾
∈ (ℤ≥‘((♯‘𝐼) + 1))) → (♯‘𝐼) < 𝐾) |
| 24 | 19, 22, 23 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝐼) < 𝐾) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝐼) < 𝐾) |
| 26 | 8, 12, 16, 18, 25 | lelttrd 11278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝑐) < 𝐾) |
| 27 | 8, 26 | ltned 11256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → (♯‘𝑐) ≠ 𝐾) |
| 28 | 27 | neneqd 2934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) → ¬ (♯‘𝑐) = 𝐾) |
| 29 | 28 | ralrimiva 3125 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑐 ∈ 𝒫 𝐼 ¬ (♯‘𝑐) = 𝐾) |
| 30 | | rabeq0 4337 |
. . . . . . . . 9
⊢ ({𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} = ∅ ↔ ∀𝑐 ∈ 𝒫 𝐼 ¬ (♯‘𝑐) = 𝐾) |
| 31 | 29, 30 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} = ∅) |
| 32 | 31 | imaeq2d 6013 |
. . . . . . 7
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) = ((𝟭‘𝐼) “ ∅)) |
| 33 | | ima0 6030 |
. . . . . . 7
⊢
((𝟭‘𝐼)
“ ∅) = ∅ |
| 34 | 32, 33 | eqtrdi 2784 |
. . . . . 6
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) = ∅) |
| 35 | 34 | fveq2d 6832 |
. . . . 5
⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) = ((𝟭‘𝐷)‘∅)) |
| 36 | | esplyfval2.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 37 | | ovex 7385 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 38 | 36, 37 | rabex2 5281 |
. . . . . 6
⊢ 𝐷 ∈ V |
| 39 | | indconst0 32846 |
. . . . . 6
⊢ (𝐷 ∈ V →
((𝟭‘𝐷)‘∅) = (𝐷 × {0})) |
| 40 | 38, 39 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ((𝟭‘𝐷)‘∅) = (𝐷 × {0})) |
| 41 | 35, 40 | eqtrd 2768 |
. . . 4
⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) = (𝐷 × {0})) |
| 42 | 41 | coeq2d 5806 |
. . 3
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) = ((ℤRHom‘𝑅) ∘ (𝐷 × {0}))) |
| 43 | | esplyfval2.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 44 | | eqid 2733 |
. . . . . . 7
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 45 | 44 | zrhrhm 21450 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(ℤRHom‘𝑅)
∈ (ℤring RingHom 𝑅)) |
| 46 | | zringbas 21392 |
. . . . . . 7
⊢ ℤ =
(Base‘ℤring) |
| 47 | | eqid 2733 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 48 | 46, 47 | rhmf 20404 |
. . . . . 6
⊢
((ℤRHom‘𝑅) ∈ (ℤring RingHom
𝑅) →
(ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 49 | 43, 45, 48 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 50 | 49 | ffnd 6657 |
. . . 4
⊢ (𝜑 → (ℤRHom‘𝑅) Fn ℤ) |
| 51 | | 0zd 12487 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
| 52 | | fcoconst 7073 |
. . . 4
⊢
(((ℤRHom‘𝑅) Fn ℤ ∧ 0 ∈ ℤ) →
((ℤRHom‘𝑅)
∘ (𝐷 × {0})) =
(𝐷 ×
{((ℤRHom‘𝑅)‘0)})) |
| 53 | 50, 51, 52 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘ (𝐷 × {0})) = (𝐷 × {((ℤRHom‘𝑅)‘0)})) |
| 54 | | eqid 2733 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 55 | 44, 54 | zrh0 21452 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = (0g‘𝑅)) |
| 56 | 43, 55 | syl 17 |
. . . . 5
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) =
(0g‘𝑅)) |
| 57 | 56 | sneqd 4587 |
. . . 4
⊢ (𝜑 → {((ℤRHom‘𝑅)‘0)} =
{(0g‘𝑅)}) |
| 58 | 57 | xpeq2d 5649 |
. . 3
⊢ (𝜑 → (𝐷 × {((ℤRHom‘𝑅)‘0)}) = (𝐷 ×
{(0g‘𝑅)})) |
| 59 | 42, 53, 58 | 3eqtrd 2772 |
. 2
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) = (𝐷 × {(0g‘𝑅)})) |
| 60 | 36, 1, 43, 14 | esplyfval 33604 |
. 2
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 61 | | eqid 2733 |
. . 3
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 62 | 36 | psrbasfsupp 33579 |
. . 3
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 63 | | esplyfval2.z |
. . 3
⊢ 𝑍 = (0g‘(𝐼 mPoly 𝑅)) |
| 64 | 43 | ringgrpd 20162 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 65 | 61, 62, 54, 63, 1, 64 | mpl0 21944 |
. 2
⊢ (𝜑 → 𝑍 = (𝐷 × {(0g‘𝑅)})) |
| 66 | 59, 60, 65 | 3eqtr4d 2778 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = 𝑍) |