| Step | Hyp | Ref
| Expression |
| 1 | | eqeq2 2741 |
. . 3
⊢
(if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ) = if(ran 𝐹 ⊆ {0, 1},
if((♯‘(𝐹 supp
0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ) ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ))) |
| 2 | | eqeq2 2741 |
. . 3
⊢ ( 0 = if(ran
𝐹 ⊆ {0, 1},
if((♯‘(𝐹 supp
0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = 0 ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ))) |
| 3 | | esplyfv.d |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 4 | | esplyfv.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐼 ∈ Fin) |
| 6 | | esplyfv.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝑅 ∈ Ring) |
| 8 | | esplyfv.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (0...(♯‘𝐼))) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐾 ∈ (0...(♯‘𝐼))) |
| 10 | | esplyfv.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐹 ∈ 𝐷) |
| 12 | | esplyfv.0 |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 13 | | esplyfv.1 |
. . . 4
⊢ 1 =
(1r‘𝑅) |
| 14 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ⊆ {0,
1}) |
| 15 | 3, 5, 7, 9, 11, 12, 13, 14 | esplyfv1 33558 |
. . 3
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 )) |
| 16 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐼 ∈ Fin) |
| 17 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝑅 ∈ Ring) |
| 18 | | elfznn0 13511 |
. . . . . . . 8
⊢ (𝐾 ∈
(0...(♯‘𝐼))
→ 𝐾 ∈
ℕ0) |
| 19 | 8, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐾 ∈
ℕ0) |
| 21 | 3, 16, 17, 20 | esplyfval 33554 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 22 | 21 | fveq1d 6818 |
. . . 4
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹)) |
| 23 | | ovex 7373 |
. . . . . . . 8
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 24 | 3, 23 | rabex2 5276 |
. . . . . . 7
⊢ 𝐷 ∈ V |
| 25 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐷 ∈ V) |
| 26 | 3, 16, 17, 20 | esplylem 33555 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| 27 | | indf 32791 |
. . . . . 6
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 28 | 25, 26, 27 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 29 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐹 ∈ 𝐷) |
| 30 | 28, 29 | fvco3d 6916 |
. . . 4
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
(((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹))) |
| 31 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑) = 𝐹) |
| 32 | 4 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐼 ∈ Fin) |
| 33 | | ssrab2 4027 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 35 | 34 | sselda 3931 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝑑 ∈ 𝒫 𝐼) |
| 37 | 36 | elpwid 4556 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝑑 ⊆ 𝐼) |
| 38 | | indf 32791 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 39 | 32, 37, 38 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 40 | 31, 39 | feq1dd 6629 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐹:𝐼⟶{0, 1}) |
| 41 | 40 | frnd 6654 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬ ran
𝐹 ⊆ {0, 1}) ∧
𝐹 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ran 𝐹 ⊆ {0, 1}) |
| 42 | | indf1o 32800 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ Fin →
(𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)) |
| 43 | | f1of 6758 |
. . . . . . . . . . . . . 14
⊢
((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)
→ (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 44 | 16, 42, 43 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
(𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 45 | 44 | ffnd 6647 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
(𝟭‘𝐼) Fn
𝒫 𝐼) |
| 46 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 47 | 45, 46 | fvelimabd 6889 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ↔ ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹)) |
| 48 | 47 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹) |
| 49 | 41, 48 | r19.29a 3137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ran 𝐹 ⊆ {0, 1}) |
| 50 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ¬ ran 𝐹 ⊆ {0, 1}) |
| 51 | 49, 50 | pm2.65da 816 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ¬ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 52 | 29, 51 | eldifd 3910 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐹 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) |
| 53 | | ind0 32794 |
. . . . . . 7
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷 ∧ 𝐹 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = 0) |
| 54 | 24, 26, 52, 53 | mp3an2i 1468 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = 0) |
| 55 | 54 | fveq2d 6820 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = ((ℤRHom‘𝑅)‘0)) |
| 56 | | eqid 2729 |
. . . . . . . 8
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 57 | 56, 12 | zrh0 21404 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = 0 ) |
| 58 | 6, 57 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) = 0 ) |
| 59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
((ℤRHom‘𝑅)‘0) = 0 ) |
| 60 | 55, 59 | eqtrd 2764 |
. . . 4
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) →
((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = 0 ) |
| 61 | 22, 30, 60 | 3eqtrd 2768 |
. . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = 0 ) |
| 62 | 1, 2, 15, 61 | ifbothda 4511 |
. 2
⊢ (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )) |
| 63 | | ifan 4526 |
. 2
⊢ if((ran
𝐹 ⊆ {0, 1} ∧
(♯‘(𝐹 supp 0))
= 𝐾), 1 , 0 ) = if(ran 𝐹 ⊆ {0, 1},
if((♯‘(𝐹 supp
0)) = 𝐾, 1 , 0 ), 0 ) |
| 64 | 62, 63 | eqtr4di 2782 |
1
⊢ (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 )) |