Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplyfv Structured version   Visualization version   GIF version

Theorem esplyfv 33598
Description: Coefficient for the 𝐾-th elementary symmetric polynomial and a bag of variables 𝐹: the coefficient is 1 for the bags of exactly 𝐾 variables, having exponent at most 1. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplyfv.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplyfv.i (𝜑𝐼 ∈ Fin)
esplyfv.r (𝜑𝑅 ∈ Ring)
esplyfv.k (𝜑𝐾 ∈ (0...(♯‘𝐼)))
esplyfv.f (𝜑𝐹𝐷)
esplyfv.0 0 = (0g𝑅)
esplyfv.1 1 = (1r𝑅)
Assertion
Ref Expression
esplyfv (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 ))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐷()   𝑅()   1 ()   𝐹()   𝐾()   0 ()

Proof of Theorem esplyfv
Dummy variables 𝑑 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2743 . . 3 (if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ) ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )))
2 eqeq2 2743 . . 3 ( 0 = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = 0 ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )))
3 esplyfv.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
4 esplyfv.i . . . . 5 (𝜑𝐼 ∈ Fin)
54adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐼 ∈ Fin)
6 esplyfv.r . . . . 5 (𝜑𝑅 ∈ Ring)
76adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝑅 ∈ Ring)
8 esplyfv.k . . . . 5 (𝜑𝐾 ∈ (0...(♯‘𝐼)))
98adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐾 ∈ (0...(♯‘𝐼)))
10 esplyfv.f . . . . 5 (𝜑𝐹𝐷)
1110adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐹𝐷)
12 esplyfv.0 . . . 4 0 = (0g𝑅)
13 esplyfv.1 . . . 4 1 = (1r𝑅)
14 simpr 484 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ⊆ {0, 1})
153, 5, 7, 9, 11, 12, 13, 14esplyfv1 33597 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ))
164adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐼 ∈ Fin)
176adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝑅 ∈ Ring)
18 elfznn0 13526 . . . . . . . 8 (𝐾 ∈ (0...(♯‘𝐼)) → 𝐾 ∈ ℕ0)
198, 18syl 17 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2019adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐾 ∈ ℕ0)
213, 16, 17, 20esplyfval 33593 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))))
2221fveq1d 6830 . . . 4 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹))
23 ovex 7385 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
243, 23rabex2 5281 . . . . . . 7 𝐷 ∈ V
2524a1i 11 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐷 ∈ V)
263, 16, 17, 20esplylem 33594 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
27 indf 32843 . . . . . 6 ((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
2825, 26, 27syl2anc 584 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
2910adantr 480 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐹𝐷)
3028, 29fvco3d 6928 . . . 4 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)))
31 simpr 484 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑) = 𝐹)
324ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐼 ∈ Fin)
33 ssrab2 4029 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼
3433a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
3534sselda 3929 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼)
3635adantr 480 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝑑 ∈ 𝒫 𝐼)
3736elpwid 4558 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝑑𝐼)
38 indf 32843 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑑𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
3932, 37, 38syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
4031, 39feq1dd 6640 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐹:𝐼⟶{0, 1})
4140frnd 6665 . . . . . . . . . 10 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ran 𝐹 ⊆ {0, 1})
42 indf1o 32852 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼))
43 f1of 6769 . . . . . . . . . . . . . 14 ((𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
4416, 42, 433syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
4544ffnd 6658 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝟭‘𝐼) Fn 𝒫 𝐼)
4633a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
4745, 46fvelimabd 6901 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ↔ ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹))
4847biimpa 476 . . . . . . . . . 10 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹)
4941, 48r19.29a 3140 . . . . . . . . 9 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ran 𝐹 ⊆ {0, 1})
50 simplr 768 . . . . . . . . 9 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ¬ ran 𝐹 ⊆ {0, 1})
5149, 50pm2.65da 816 . . . . . . . 8 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ¬ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))
5229, 51eldifd 3908 . . . . . . 7 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐹 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))
53 ind0 32846 . . . . . . 7 ((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷𝐹 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = 0)
5424, 26, 52, 53mp3an2i 1468 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = 0)
5554fveq2d 6832 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = ((ℤRHom‘𝑅)‘0))
56 eqid 2731 . . . . . . . 8 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
5756, 12zrh0 21456 . . . . . . 7 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘0) = 0 )
586, 57syl 17 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅)‘0) = 0 )
5958adantr 480 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((ℤRHom‘𝑅)‘0) = 0 )
6055, 59eqtrd 2766 . . . 4 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = 0 )
6122, 30, 603eqtrd 2770 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = 0 )
621, 2, 15, 61ifbothda 4513 . 2 (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ))
63 ifan 4528 . 2 if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 ) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )
6462, 63eqtr4di 2784 1 (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  ifcif 4474  𝒫 cpw 4549  {cpr 4577   class class class wbr 5093  ran crn 5620  cima 5622  ccom 5623  wf 6483  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9251  0cc0 11012  1c1 11013  0cn0 12387  ...cfz 13413  chash 14243  0gc0g 17349  1rcur 20105  Ringcrg 20157  ℤRHomczrh 21442  𝟭cind 32838  eSymPolycesply 33586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-seq 13915  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-grp 18855  df-minusg 18856  df-mulg 18987  df-subg 19042  df-ghm 19131  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-rhm 20396  df-subrng 20467  df-subrg 20491  df-cnfld 21298  df-zring 21390  df-zrh 21446  df-ind 32839  df-esply 33588
This theorem is referenced by:  esplysply  33599
  Copyright terms: Public domain W3C validator