Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplyfv Structured version   Visualization version   GIF version

Theorem esplyfv 33559
Description: Coefficient for the 𝐾-th elementary symmetric polynomial and a bag of variables 𝐹: the coefficient is 1 for the bags of exactly 𝐾 variables, having exponent at most 1. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplyfv.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplyfv.i (𝜑𝐼 ∈ Fin)
esplyfv.r (𝜑𝑅 ∈ Ring)
esplyfv.k (𝜑𝐾 ∈ (0...(♯‘𝐼)))
esplyfv.f (𝜑𝐹𝐷)
esplyfv.0 0 = (0g𝑅)
esplyfv.1 1 = (1r𝑅)
Assertion
Ref Expression
esplyfv (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 ))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐷()   𝑅()   1 ()   𝐹()   𝐾()   0 ()

Proof of Theorem esplyfv
Dummy variables 𝑑 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2741 . . 3 (if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ) ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )))
2 eqeq2 2741 . . 3 ( 0 = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = 0 ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )))
3 esplyfv.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
4 esplyfv.i . . . . 5 (𝜑𝐼 ∈ Fin)
54adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐼 ∈ Fin)
6 esplyfv.r . . . . 5 (𝜑𝑅 ∈ Ring)
76adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝑅 ∈ Ring)
8 esplyfv.k . . . . 5 (𝜑𝐾 ∈ (0...(♯‘𝐼)))
98adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐾 ∈ (0...(♯‘𝐼)))
10 esplyfv.f . . . . 5 (𝜑𝐹𝐷)
1110adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → 𝐹𝐷)
12 esplyfv.0 . . . 4 0 = (0g𝑅)
13 esplyfv.1 . . . 4 1 = (1r𝑅)
14 simpr 484 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ⊆ {0, 1})
153, 5, 7, 9, 11, 12, 13, 14esplyfv1 33558 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ))
164adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐼 ∈ Fin)
176adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝑅 ∈ Ring)
18 elfznn0 13511 . . . . . . . 8 (𝐾 ∈ (0...(♯‘𝐼)) → 𝐾 ∈ ℕ0)
198, 18syl 17 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2019adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐾 ∈ ℕ0)
213, 16, 17, 20esplyfval 33554 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))))
2221fveq1d 6818 . . . 4 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹))
23 ovex 7373 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
243, 23rabex2 5276 . . . . . . 7 𝐷 ∈ V
2524a1i 11 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐷 ∈ V)
263, 16, 17, 20esplylem 33555 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
27 indf 32791 . . . . . 6 ((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
2825, 26, 27syl2anc 584 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
2910adantr 480 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐹𝐷)
3028, 29fvco3d 6916 . . . 4 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)))
31 simpr 484 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑) = 𝐹)
324ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐼 ∈ Fin)
33 ssrab2 4027 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼
3433a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
3534sselda 3931 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼)
3635adantr 480 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝑑 ∈ 𝒫 𝐼)
3736elpwid 4556 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝑑𝐼)
38 indf 32791 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑑𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
3932, 37, 38syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1})
4031, 39feq1dd 6629 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐹:𝐼⟶{0, 1})
4140frnd 6654 . . . . . . . . . 10 (((((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ran 𝐹 ⊆ {0, 1})
42 indf1o 32800 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼))
43 f1of 6758 . . . . . . . . . . . . . 14 ((𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
4416, 42, 433syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
4544ffnd 6647 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝟭‘𝐼) Fn 𝒫 𝐼)
4633a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
4745, 46fvelimabd 6889 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ↔ ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹))
4847biimpa 476 . . . . . . . . . 10 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹)
4941, 48r19.29a 3137 . . . . . . . . 9 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ran 𝐹 ⊆ {0, 1})
50 simplr 768 . . . . . . . . 9 (((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ¬ ran 𝐹 ⊆ {0, 1})
5149, 50pm2.65da 816 . . . . . . . 8 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ¬ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))
5229, 51eldifd 3910 . . . . . . 7 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → 𝐹 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))
53 ind0 32794 . . . . . . 7 ((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷𝐹 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = 0)
5424, 26, 52, 53mp3an2i 1468 . . . . . 6 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = 0)
5554fveq2d 6820 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = ((ℤRHom‘𝑅)‘0))
56 eqid 2729 . . . . . . . 8 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
5756, 12zrh0 21404 . . . . . . 7 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘0) = 0 )
586, 57syl 17 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅)‘0) = 0 )
5958adantr 480 . . . . 5 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((ℤRHom‘𝑅)‘0) = 0 )
6055, 59eqtrd 2764 . . . 4 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = 0 )
6122, 30, 603eqtrd 2768 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = 0 )
621, 2, 15, 61ifbothda 4511 . 2 (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 ))
63 ifan 4526 . 2 if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 ) = if(ran 𝐹 ⊆ {0, 1}, if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 ), 0 )
6462, 63eqtr4di 2782 1 (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((ran 𝐹 ⊆ {0, 1} ∧ (♯‘(𝐹 supp 0)) = 𝐾), 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3392  Vcvv 3433  cdif 3896  wss 3899  ifcif 4472  𝒫 cpw 4547  {cpr 4575   class class class wbr 5088  ran crn 5614  cima 5616  ccom 5617  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7340   supp csupp 8084  m cmap 8744  Fincfn 8863   finSupp cfsupp 9239  0cc0 10997  1c1 10998  0cn0 12372  ...cfz 13398  chash 14225  0gc0g 17330  1rcur 20053  Ringcrg 20105  ℤRHomczrh 21390  𝟭cind 32786  eSymPolycesply 33547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074  ax-addf 11076  ax-mulf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-om 7791  df-1st 7915  df-2nd 7916  df-supp 8085  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-er 8616  df-map 8746  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-fsupp 9240  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-nn 12117  df-2 12179  df-3 12180  df-4 12181  df-5 12182  df-6 12183  df-7 12184  df-8 12185  df-9 12186  df-n0 12373  df-z 12460  df-dec 12580  df-uz 12724  df-fz 13399  df-seq 13897  df-struct 17045  df-sets 17062  df-slot 17080  df-ndx 17092  df-base 17108  df-ress 17129  df-plusg 17161  df-mulr 17162  df-starv 17163  df-tset 17167  df-ple 17168  df-ds 17170  df-unif 17171  df-0g 17332  df-mgm 18501  df-sgrp 18580  df-mnd 18596  df-mhm 18644  df-grp 18802  df-minusg 18803  df-mulg 18934  df-subg 18989  df-ghm 19079  df-cmn 19648  df-abl 19649  df-mgp 20013  df-rng 20025  df-ur 20054  df-ring 20107  df-cring 20108  df-rhm 20344  df-subrng 20415  df-subrg 20439  df-cnfld 21246  df-zring 21338  df-zrh 21394  df-ind 32787  df-esply 33549
This theorem is referenced by:  esplysply  33560
  Copyright terms: Public domain W3C validator