Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem1 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem1 45841
Description: Lemma 1 for zlmodzxzldep 45845. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem1 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})

Proof of Theorem zlmodzxzldeplem1
StepHypRef Expression
1 zex 12328 . 2 ℤ ∈ V
2 prex 5355 . 2 {𝐴, 𝐵} ∈ V
3 zlmodzxzldep.a . . . . . . . 8 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4 prex 5355 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
53, 4eqeltri 2835 . . . . . . 7 𝐴 ∈ V
6 zlmodzxzldep.b . . . . . . . 8 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
7 prex 5355 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
86, 7eqeltri 2835 . . . . . . 7 𝐵 ∈ V
95, 8pm3.2i 471 . . . . . 6 (𝐴 ∈ V ∧ 𝐵 ∈ V)
109a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
11 2z 12352 . . . . . . 7 2 ∈ ℤ
12 3nn0 12251 . . . . . . . 8 3 ∈ ℕ0
1312nn0negzi 12359 . . . . . . 7 -3 ∈ ℤ
1411, 13pm3.2i 471 . . . . . 6 (2 ∈ ℤ ∧ -3 ∈ ℤ)
1514a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ))
16 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
1716, 3, 6zlmodzxzldeplem 45839 . . . . . 6 𝐴𝐵
1817a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴𝐵)
19 fprg 7027 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
20 zlmodzxzldeplem.f . . . . . . 7 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
2120feq1i 6591 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
2219, 21sylibr 233 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
2310, 15, 18, 22syl3anc 1370 . . . 4 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
24 prssi 4754 . . . . 5 ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ)
2511, 13, 24mp2an 689 . . . 4 {2, -3} ⊆ ℤ
26 fss 6617 . . . 4 ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ)
2723, 25, 26sylancl 586 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ)
28 elmapg 8628 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ))
2927, 28mpbird 256 . 2 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}))
301, 2, 29mp2an 689 1 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  {cpr 4563  cop 4567  wf 6429  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872  -cneg 11206  2c2 12028  3c3 12029  4c4 12030  6c6 12032  cz 12319  ringczring 20670   freeLMod cfrlm 20953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320
This theorem is referenced by:  zlmodzxzldeplem2  45842  zlmodzxzldeplem3  45843  zlmodzxzldep  45845
  Copyright terms: Public domain W3C validator