Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem1 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem1 42857
Description: Lemma 1 for zlmodzxzldep 42861. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem1 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})

Proof of Theorem zlmodzxzldeplem1
StepHypRef Expression
1 zex 11652 . 2 ℤ ∈ V
2 prex 5099 . 2 {𝐴, 𝐵} ∈ V
3 zlmodzxzldep.a . . . . . . . 8 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4 prex 5099 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
53, 4eqeltri 2881 . . . . . . 7 𝐴 ∈ V
6 zlmodzxzldep.b . . . . . . . 8 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
7 prex 5099 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
86, 7eqeltri 2881 . . . . . . 7 𝐵 ∈ V
95, 8pm3.2i 458 . . . . . 6 (𝐴 ∈ V ∧ 𝐵 ∈ V)
109a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
11 2z 11675 . . . . . . 7 2 ∈ ℤ
12 3nn0 11577 . . . . . . . 8 3 ∈ ℕ0
1312nn0negzi 11682 . . . . . . 7 -3 ∈ ℤ
1411, 13pm3.2i 458 . . . . . 6 (2 ∈ ℤ ∧ -3 ∈ ℤ)
1514a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ))
16 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
1716, 3, 6zlmodzxzldeplem 42855 . . . . . 6 𝐴𝐵
1817a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴𝐵)
19 fprg 6646 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
20 zlmodzxzldeplem.f . . . . . . 7 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
2120feq1i 6247 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
2219, 21sylibr 225 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
2310, 15, 18, 22syl3anc 1483 . . . 4 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
24 prssi 4542 . . . . 5 ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ)
2511, 13, 24mp2an 675 . . . 4 {2, -3} ⊆ ℤ
26 fss 6269 . . . 4 ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ)
2723, 25, 26sylancl 576 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ)
28 elmapg 8105 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ))
2927, 28mpbird 248 . 2 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}))
301, 2, 29mp2an 675 1 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  Vcvv 3391  wss 3769  {cpr 4372  cop 4376  wf 6097  (class class class)co 6874  𝑚 cmap 8092  0cc0 10221  1c1 10222  -cneg 10552  2c2 11356  3c3 11357  4c4 11358  6c6 11360  cz 11643  ringzring 20026   freeLMod cfrlm 20300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-z 11644
This theorem is referenced by:  zlmodzxzldeplem2  42858  zlmodzxzldeplem3  42859  zlmodzxzldep  42861
  Copyright terms: Public domain W3C validator