![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for zlmodzxzldep 47684. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | β’ π = (β€ring freeLMod {0, 1}) |
zlmodzxzldep.a | β’ π΄ = {β¨0, 3β©, β¨1, 6β©} |
zlmodzxzldep.b | β’ π΅ = {β¨0, 2β©, β¨1, 4β©} |
zlmodzxzldeplem.f | β’ πΉ = {β¨π΄, 2β©, β¨π΅, -3β©} |
Ref | Expression |
---|---|
zlmodzxzldeplem1 | β’ πΉ β (β€ βm {π΄, π΅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12597 | . 2 β’ β€ β V | |
2 | prex 5433 | . 2 β’ {π΄, π΅} β V | |
3 | zlmodzxzldep.a | . . . . . . . 8 β’ π΄ = {β¨0, 3β©, β¨1, 6β©} | |
4 | prex 5433 | . . . . . . . 8 β’ {β¨0, 3β©, β¨1, 6β©} β V | |
5 | 3, 4 | eqeltri 2821 | . . . . . . 7 β’ π΄ β V |
6 | zlmodzxzldep.b | . . . . . . . 8 β’ π΅ = {β¨0, 2β©, β¨1, 4β©} | |
7 | prex 5433 | . . . . . . . 8 β’ {β¨0, 2β©, β¨1, 4β©} β V | |
8 | 6, 7 | eqeltri 2821 | . . . . . . 7 β’ π΅ β V |
9 | 5, 8 | pm3.2i 469 | . . . . . 6 β’ (π΄ β V β§ π΅ β V) |
10 | 9 | a1i 11 | . . . . 5 β’ ((β€ β V β§ {π΄, π΅} β V) β (π΄ β V β§ π΅ β V)) |
11 | 2z 12624 | . . . . . . 7 β’ 2 β β€ | |
12 | 3nn0 12520 | . . . . . . . 8 β’ 3 β β0 | |
13 | 12 | nn0negzi 12631 | . . . . . . 7 β’ -3 β β€ |
14 | 11, 13 | pm3.2i 469 | . . . . . 6 β’ (2 β β€ β§ -3 β β€) |
15 | 14 | a1i 11 | . . . . 5 β’ ((β€ β V β§ {π΄, π΅} β V) β (2 β β€ β§ -3 β β€)) |
16 | zlmodzxzldep.z | . . . . . . 7 β’ π = (β€ring freeLMod {0, 1}) | |
17 | 16, 3, 6 | zlmodzxzldeplem 47678 | . . . . . 6 β’ π΄ β π΅ |
18 | 17 | a1i 11 | . . . . 5 β’ ((β€ β V β§ {π΄, π΅} β V) β π΄ β π΅) |
19 | fprg 7162 | . . . . . 6 β’ (((π΄ β V β§ π΅ β V) β§ (2 β β€ β§ -3 β β€) β§ π΄ β π΅) β {β¨π΄, 2β©, β¨π΅, -3β©}:{π΄, π΅}βΆ{2, -3}) | |
20 | zlmodzxzldeplem.f | . . . . . . 7 β’ πΉ = {β¨π΄, 2β©, β¨π΅, -3β©} | |
21 | 20 | feq1i 6712 | . . . . . 6 β’ (πΉ:{π΄, π΅}βΆ{2, -3} β {β¨π΄, 2β©, β¨π΅, -3β©}:{π΄, π΅}βΆ{2, -3}) |
22 | 19, 21 | sylibr 233 | . . . . 5 β’ (((π΄ β V β§ π΅ β V) β§ (2 β β€ β§ -3 β β€) β§ π΄ β π΅) β πΉ:{π΄, π΅}βΆ{2, -3}) |
23 | 10, 15, 18, 22 | syl3anc 1368 | . . . 4 β’ ((β€ β V β§ {π΄, π΅} β V) β πΉ:{π΄, π΅}βΆ{2, -3}) |
24 | prssi 4825 | . . . . 5 β’ ((2 β β€ β§ -3 β β€) β {2, -3} β β€) | |
25 | 11, 13, 24 | mp2an 690 | . . . 4 β’ {2, -3} β β€ |
26 | fss 6737 | . . . 4 β’ ((πΉ:{π΄, π΅}βΆ{2, -3} β§ {2, -3} β β€) β πΉ:{π΄, π΅}βΆβ€) | |
27 | 23, 25, 26 | sylancl 584 | . . 3 β’ ((β€ β V β§ {π΄, π΅} β V) β πΉ:{π΄, π΅}βΆβ€) |
28 | elmapg 8856 | . . 3 β’ ((β€ β V β§ {π΄, π΅} β V) β (πΉ β (β€ βm {π΄, π΅}) β πΉ:{π΄, π΅}βΆβ€)) | |
29 | 27, 28 | mpbird 256 | . 2 β’ ((β€ β V β§ {π΄, π΅} β V) β πΉ β (β€ βm {π΄, π΅})) |
30 | 1, 2, 29 | mp2an 690 | 1 β’ πΉ β (β€ βm {π΄, π΅}) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 β wss 3945 {cpr 4631 β¨cop 4635 βΆwf 6543 (class class class)co 7417 βm cmap 8843 0cc0 11138 1c1 11139 -cneg 11475 2c2 12297 3c3 12298 4c4 12299 6c6 12301 β€cz 12588 β€ringczring 21376 freeLMod cfrlm 21684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 |
This theorem is referenced by: zlmodzxzldeplem2 47681 zlmodzxzldeplem3 47682 zlmodzxzldep 47684 |
Copyright terms: Public domain | W3C validator |