Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for zlmodzxzldep 45733. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
Ref | Expression |
---|---|
zlmodzxzldeplem1 | ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12258 | . 2 ⊢ ℤ ∈ V | |
2 | prex 5350 | . 2 ⊢ {𝐴, 𝐵} ∈ V | |
3 | zlmodzxzldep.a | . . . . . . . 8 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
4 | prex 5350 | . . . . . . . 8 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
5 | 3, 4 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐴 ∈ V |
6 | zlmodzxzldep.b | . . . . . . . 8 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
7 | prex 5350 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
8 | 6, 7 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐵 ∈ V |
9 | 5, 8 | pm3.2i 470 | . . . . . 6 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 2z 12282 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3nn0 12181 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
13 | 12 | nn0negzi 12289 | . . . . . . 7 ⊢ -3 ∈ ℤ |
14 | 11, 13 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℤ ∧ -3 ∈ ℤ) |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ)) |
16 | zlmodzxzldep.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
17 | 16, 3, 6 | zlmodzxzldeplem 45727 | . . . . . 6 ⊢ 𝐴 ≠ 𝐵 |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴 ≠ 𝐵) |
19 | fprg 7009 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 2〉, 〈𝐵, -3〉}:{𝐴, 𝐵}⟶{2, -3}) | |
20 | zlmodzxzldeplem.f | . . . . . . 7 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
21 | 20 | feq1i 6575 | . . . . . 6 ⊢ (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {〈𝐴, 2〉, 〈𝐵, -3〉}:{𝐴, 𝐵}⟶{2, -3}) |
22 | 19, 21 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴 ≠ 𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3}) |
23 | 10, 15, 18, 22 | syl3anc 1369 | . . . 4 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3}) |
24 | prssi 4751 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ) | |
25 | 11, 13, 24 | mp2an 688 | . . . 4 ⊢ {2, -3} ⊆ ℤ |
26 | fss 6601 | . . . 4 ⊢ ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ) | |
27 | 23, 25, 26 | sylancl 585 | . . 3 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ) |
28 | elmapg 8586 | . . 3 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ)) | |
29 | 27, 28 | mpbird 256 | . 2 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})) |
30 | 1, 2, 29 | mp2an 688 | 1 ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 {cpr 4560 〈cop 4564 ⟶wf 6414 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 1c1 10803 -cneg 11136 2c2 11958 3c3 11959 4c4 11960 6c6 11962 ℤcz 12249 ℤringzring 20582 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 |
This theorem is referenced by: zlmodzxzldeplem2 45730 zlmodzxzldeplem3 45731 zlmodzxzldep 45733 |
Copyright terms: Public domain | W3C validator |