Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem1 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem1 43952
Description: Lemma 1 for zlmodzxzldep 43956. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem1 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})

Proof of Theorem zlmodzxzldeplem1
StepHypRef Expression
1 zex 11801 . 2 ℤ ∈ V
2 prex 5186 . 2 {𝐴, 𝐵} ∈ V
3 zlmodzxzldep.a . . . . . . . 8 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4 prex 5186 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
53, 4eqeltri 2857 . . . . . . 7 𝐴 ∈ V
6 zlmodzxzldep.b . . . . . . . 8 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
7 prex 5186 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
86, 7eqeltri 2857 . . . . . . 7 𝐵 ∈ V
95, 8pm3.2i 463 . . . . . 6 (𝐴 ∈ V ∧ 𝐵 ∈ V)
109a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
11 2z 11826 . . . . . . 7 2 ∈ ℤ
12 3nn0 11726 . . . . . . . 8 3 ∈ ℕ0
1312nn0negzi 11833 . . . . . . 7 -3 ∈ ℤ
1411, 13pm3.2i 463 . . . . . 6 (2 ∈ ℤ ∧ -3 ∈ ℤ)
1514a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ))
16 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
1716, 3, 6zlmodzxzldeplem 43950 . . . . . 6 𝐴𝐵
1817a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴𝐵)
19 fprg 6739 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
20 zlmodzxzldeplem.f . . . . . . 7 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
2120feq1i 6333 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
2219, 21sylibr 226 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
2310, 15, 18, 22syl3anc 1352 . . . 4 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
24 prssi 4625 . . . . 5 ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ)
2511, 13, 24mp2an 680 . . . 4 {2, -3} ⊆ ℤ
26 fss 6355 . . . 4 ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ)
2723, 25, 26sylancl 578 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ)
28 elmapg 8218 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ))
2927, 28mpbird 249 . 2 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}))
301, 2, 29mp2an 680 1 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2962  Vcvv 3410  wss 3824  {cpr 4438  cop 4442  wf 6182  (class class class)co 6975  𝑚 cmap 8205  0cc0 10334  1c1 10335  -cneg 10670  2c2 11494  3c3 11495  4c4 11496  6c6 11498  cz 11792  ringzring 20335   freeLMod cfrlm 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793
This theorem is referenced by:  zlmodzxzldeplem2  43953  zlmodzxzldeplem3  43954  zlmodzxzldep  43956
  Copyright terms: Public domain W3C validator