Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem1 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem1 45729
Description: Lemma 1 for zlmodzxzldep 45733. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem1 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})

Proof of Theorem zlmodzxzldeplem1
StepHypRef Expression
1 zex 12258 . 2 ℤ ∈ V
2 prex 5350 . 2 {𝐴, 𝐵} ∈ V
3 zlmodzxzldep.a . . . . . . . 8 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4 prex 5350 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
53, 4eqeltri 2835 . . . . . . 7 𝐴 ∈ V
6 zlmodzxzldep.b . . . . . . . 8 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
7 prex 5350 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
86, 7eqeltri 2835 . . . . . . 7 𝐵 ∈ V
95, 8pm3.2i 470 . . . . . 6 (𝐴 ∈ V ∧ 𝐵 ∈ V)
109a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
11 2z 12282 . . . . . . 7 2 ∈ ℤ
12 3nn0 12181 . . . . . . . 8 3 ∈ ℕ0
1312nn0negzi 12289 . . . . . . 7 -3 ∈ ℤ
1411, 13pm3.2i 470 . . . . . 6 (2 ∈ ℤ ∧ -3 ∈ ℤ)
1514a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ))
16 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
1716, 3, 6zlmodzxzldeplem 45727 . . . . . 6 𝐴𝐵
1817a1i 11 . . . . 5 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴𝐵)
19 fprg 7009 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
20 zlmodzxzldeplem.f . . . . . . 7 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
2120feq1i 6575 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}:{𝐴, 𝐵}⟶{2, -3})
2219, 21sylibr 233 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
2310, 15, 18, 22syl3anc 1369 . . . 4 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3})
24 prssi 4751 . . . . 5 ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ)
2511, 13, 24mp2an 688 . . . 4 {2, -3} ⊆ ℤ
26 fss 6601 . . . 4 ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ)
2723, 25, 26sylancl 585 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ)
28 elmapg 8586 . . 3 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ))
2927, 28mpbird 256 . 2 ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}))
301, 2, 29mp2an 688 1 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  {cpr 4560  cop 4564  wf 6414  (class class class)co 7255  m cmap 8573  0cc0 10802  1c1 10803  -cneg 11136  2c2 11958  3c3 11959  4c4 11960  6c6 11962  cz 12249  ringzring 20582   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250
This theorem is referenced by:  zlmodzxzldeplem2  45730  zlmodzxzldeplem3  45731  zlmodzxzldep  45733
  Copyright terms: Public domain W3C validator