| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for zlmodzxzldep 48480. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
| Ref | Expression |
|---|---|
| zlmodzxzldeplem1 | ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12597 | . 2 ⊢ ℤ ∈ V | |
| 2 | prex 5407 | . 2 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | zlmodzxzldep.a | . . . . . . . 8 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 4 | prex 5407 | . . . . . . . 8 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
| 5 | 3, 4 | eqeltri 2830 | . . . . . . 7 ⊢ 𝐴 ∈ V |
| 6 | zlmodzxzldep.b | . . . . . . . 8 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 7 | prex 5407 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
| 8 | 6, 7 | eqeltri 2830 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 9 | 5, 8 | pm3.2i 470 | . . . . . 6 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 11 | 2z 12624 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 12 | 3nn0 12519 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
| 13 | 12 | nn0negzi 12631 | . . . . . . 7 ⊢ -3 ∈ ℤ |
| 14 | 11, 13 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℤ ∧ -3 ∈ ℤ) |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ)) |
| 16 | zlmodzxzldep.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 17 | 16, 3, 6 | zlmodzxzldeplem 48474 | . . . . . 6 ⊢ 𝐴 ≠ 𝐵 |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴 ≠ 𝐵) |
| 19 | fprg 7145 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 2〉, 〈𝐵, -3〉}:{𝐴, 𝐵}⟶{2, -3}) | |
| 20 | zlmodzxzldeplem.f | . . . . . . 7 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
| 21 | 20 | feq1i 6697 | . . . . . 6 ⊢ (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {〈𝐴, 2〉, 〈𝐵, -3〉}:{𝐴, 𝐵}⟶{2, -3}) |
| 22 | 19, 21 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴 ≠ 𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3}) |
| 23 | 10, 15, 18, 22 | syl3anc 1373 | . . . 4 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3}) |
| 24 | prssi 4797 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ) | |
| 25 | 11, 13, 24 | mp2an 692 | . . . 4 ⊢ {2, -3} ⊆ ℤ |
| 26 | fss 6722 | . . . 4 ⊢ ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ) | |
| 27 | 23, 25, 26 | sylancl 586 | . . 3 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ) |
| 28 | elmapg 8853 | . . 3 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ)) | |
| 29 | 27, 28 | mpbird 257 | . 2 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})) |
| 30 | 1, 2, 29 | mp2an 692 | 1 ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⊆ wss 3926 {cpr 4603 〈cop 4607 ⟶wf 6527 (class class class)co 7405 ↑m cmap 8840 0cc0 11129 1c1 11130 -cneg 11467 2c2 12295 3c3 12296 4c4 12297 6c6 12299 ℤcz 12588 ℤringczring 21407 freeLMod cfrlm 21706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 |
| This theorem is referenced by: zlmodzxzldeplem2 48477 zlmodzxzldeplem3 48478 zlmodzxzldep 48480 |
| Copyright terms: Public domain | W3C validator |