| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rerpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
| Ref | Expression |
|---|---|
| rerpdivcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprene0 12905 | . 2 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 2 | redivcl 11837 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 4 | 1, 3 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℝcr 11002 0cc0 11003 / cdiv 11771 ℝ+crp 12887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-rp 12888 |
| This theorem is referenced by: ledivge1le 12960 rerpdivcld 12962 icccntr 13389 refldivcl 13724 fldivle 13732 ltdifltdiv 13735 modvalr 13773 flpmodeq 13775 mod0 13777 negmod0 13779 modlt 13781 moddiffl 13783 moddifz 13784 modid 13797 modcyc 13807 modadd1 13809 modmul1 13828 moddi 13843 modsubdir 13844 modirr 13846 sqrtdiv 15169 divrcnv 15756 gexdvds 19494 aaliou3lem8 26278 logdivlt 26555 cxp2limlem 26911 harmonicbnd4 26946 logexprlim 27161 bposlem7 27226 bposlem9 27228 chebbnd1lem3 27407 chebbnd1 27408 chto1ub 27412 chpo1ub 27416 vmadivsum 27418 rplogsumlem1 27420 dchrvmasumlema 27436 dchrvmasumiflem1 27437 dchrisum0fno1 27447 mulogsumlem 27467 logdivsum 27469 mulog2sumlem1 27470 selberg2lem 27486 selberg3lem1 27493 pntrmax 27500 pntpbnd1a 27521 pntpbnd1 27522 pntpbnd2 27523 pntpbnd 27524 pntibndlem3 27528 pntlem3 27545 pntleml 27547 pnt2 27549 subfacval3 35221 heiborlem6 37855 fldivmod 47368 ceildivmod 47369 |
| Copyright terms: Public domain | W3C validator |