![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rerpdivcl | Structured version Visualization version GIF version |
Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
Ref | Expression |
---|---|
rerpdivcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprene0 13074 | . 2 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
2 | redivcl 12013 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
4 | 1, 3 | sylan2 592 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℝcr 11183 0cc0 11184 / cdiv 11947 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-rp 13058 |
This theorem is referenced by: ledivge1le 13128 rerpdivcld 13130 icccntr 13552 refldivcl 13874 fldivle 13882 ltdifltdiv 13885 modvalr 13923 flpmodeq 13925 mod0 13927 negmod0 13929 modlt 13931 moddiffl 13933 moddifz 13934 modid 13947 modcyc 13957 modadd1 13959 modmul1 13975 moddi 13990 modsubdir 13991 modirr 13993 sqrtdiv 15314 divrcnv 15900 gexdvds 19626 aaliou3lem8 26405 logdivlt 26681 cxp2limlem 27037 harmonicbnd4 27072 logexprlim 27287 bposlem7 27352 bposlem9 27354 chebbnd1lem3 27533 chebbnd1 27534 chto1ub 27538 chpo1ub 27542 vmadivsum 27544 rplogsumlem1 27546 dchrvmasumlema 27562 dchrvmasumiflem1 27563 dchrisum0fno1 27573 mulogsumlem 27593 logdivsum 27595 mulog2sumlem1 27596 selberg2lem 27612 selberg3lem1 27619 pntrmax 27626 pntpbnd1a 27647 pntpbnd1 27648 pntpbnd2 27649 pntpbnd 27650 pntibndlem3 27654 pntlem3 27671 pntleml 27673 pnt2 27675 subfacval3 35157 heiborlem6 37776 fldivmod 48252 |
Copyright terms: Public domain | W3C validator |