MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rerpdivcl Structured version   Visualization version   GIF version

Theorem rerpdivcl 13009
Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
rerpdivcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)

Proof of Theorem rerpdivcl
StepHypRef Expression
1 rprene0 12996 . 2 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 redivcl 11938 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
323expb 1119 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
41, 3sylan2 592 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wne 2939  (class class class)co 7412  cr 11113  0cc0 11114   / cdiv 11876  +crp 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-rp 12980
This theorem is referenced by:  ledivge1le  13050  rerpdivcld  13052  icccntr  13474  refldivcl  13793  fldivle  13801  ltdifltdiv  13804  modvalr  13842  flpmodeq  13844  mod0  13846  negmod0  13848  modlt  13850  moddiffl  13852  moddifz  13853  modid  13866  modcyc  13876  modadd1  13878  modmul1  13894  moddi  13909  modsubdir  13910  modirr  13912  sqrtdiv  15217  divrcnv  15803  gexdvds  19494  aaliou3lem8  26095  logdivlt  26366  cxp2limlem  26717  harmonicbnd4  26752  logexprlim  26965  bposlem7  27030  bposlem9  27032  chebbnd1lem3  27211  chebbnd1  27212  chto1ub  27216  chpo1ub  27220  vmadivsum  27222  rplogsumlem1  27224  dchrvmasumlema  27240  dchrvmasumiflem1  27241  dchrisum0fno1  27251  mulogsumlem  27271  logdivsum  27273  mulog2sumlem1  27274  selberg2lem  27290  selberg3lem1  27297  pntrmax  27304  pntpbnd1a  27325  pntpbnd1  27326  pntpbnd2  27327  pntpbnd  27328  pntibndlem3  27332  pntlem3  27349  pntleml  27351  pnt2  27353  subfacval3  34479  heiborlem6  36988  fldivmod  47292
  Copyright terms: Public domain W3C validator