| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rerpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
| Ref | Expression |
|---|---|
| rerpdivcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprene0 12969 | . 2 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 2 | redivcl 11901 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 4 | 1, 3 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℝcr 11067 0cc0 11068 / cdiv 11835 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-rp 12952 |
| This theorem is referenced by: ledivge1le 13024 rerpdivcld 13026 icccntr 13453 refldivcl 13785 fldivle 13793 ltdifltdiv 13796 modvalr 13834 flpmodeq 13836 mod0 13838 negmod0 13840 modlt 13842 moddiffl 13844 moddifz 13845 modid 13858 modcyc 13868 modadd1 13870 modmul1 13889 moddi 13904 modsubdir 13905 modirr 13907 sqrtdiv 15231 divrcnv 15818 gexdvds 19514 aaliou3lem8 26253 logdivlt 26530 cxp2limlem 26886 harmonicbnd4 26921 logexprlim 27136 bposlem7 27201 bposlem9 27203 chebbnd1lem3 27382 chebbnd1 27383 chto1ub 27387 chpo1ub 27391 vmadivsum 27393 rplogsumlem1 27395 dchrvmasumlema 27411 dchrvmasumiflem1 27412 dchrisum0fno1 27422 mulogsumlem 27442 logdivsum 27444 mulog2sumlem1 27445 selberg2lem 27461 selberg3lem1 27468 pntrmax 27475 pntpbnd1a 27496 pntpbnd1 27497 pntpbnd2 27498 pntpbnd 27499 pntibndlem3 27503 pntlem3 27520 pntleml 27522 pnt2 27524 subfacval3 35176 heiborlem6 37810 fldivmod 47339 ceildivmod 47340 |
| Copyright terms: Public domain | W3C validator |