MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rerpdivcl Structured version   Visualization version   GIF version

Theorem rerpdivcl 12943
Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
rerpdivcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)

Proof of Theorem rerpdivcl
StepHypRef Expression
1 rprene0 12929 . 2 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 redivcl 11861 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
323expb 1120 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
41, 3sylan2 593 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  (class class class)co 7353  cr 11027  0cc0 11028   / cdiv 11795  +crp 12911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-rp 12912
This theorem is referenced by:  ledivge1le  12984  rerpdivcld  12986  icccntr  13413  refldivcl  13745  fldivle  13753  ltdifltdiv  13756  modvalr  13794  flpmodeq  13796  mod0  13798  negmod0  13800  modlt  13802  moddiffl  13804  moddifz  13805  modid  13818  modcyc  13828  modadd1  13830  modmul1  13849  moddi  13864  modsubdir  13865  modirr  13867  sqrtdiv  15190  divrcnv  15777  gexdvds  19481  aaliou3lem8  26269  logdivlt  26546  cxp2limlem  26902  harmonicbnd4  26937  logexprlim  27152  bposlem7  27217  bposlem9  27219  chebbnd1lem3  27398  chebbnd1  27399  chto1ub  27403  chpo1ub  27407  vmadivsum  27409  rplogsumlem1  27411  dchrvmasumlema  27427  dchrvmasumiflem1  27428  dchrisum0fno1  27438  mulogsumlem  27458  logdivsum  27460  mulog2sumlem1  27461  selberg2lem  27477  selberg3lem1  27484  pntrmax  27491  pntpbnd1a  27512  pntpbnd1  27513  pntpbnd2  27514  pntpbnd  27515  pntibndlem3  27519  pntlem3  27536  pntleml  27538  pnt2  27540  subfacval3  35161  heiborlem6  37795  fldivmod  47323  ceildivmod  47324
  Copyright terms: Public domain W3C validator