MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rerpdivcl Structured version   Visualization version   GIF version

Theorem rerpdivcl 13044
Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
rerpdivcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)

Proof of Theorem rerpdivcl
StepHypRef Expression
1 rprene0 13031 . 2 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 redivcl 11971 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
323expb 1117 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
41, 3sylan2 591 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wne 2937  (class class class)co 7426  cr 11145  0cc0 11146   / cdiv 11909  +crp 13014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-rp 13015
This theorem is referenced by:  ledivge1le  13085  rerpdivcld  13087  icccntr  13509  refldivcl  13828  fldivle  13836  ltdifltdiv  13839  modvalr  13877  flpmodeq  13879  mod0  13881  negmod0  13883  modlt  13885  moddiffl  13887  moddifz  13888  modid  13901  modcyc  13911  modadd1  13913  modmul1  13929  moddi  13944  modsubdir  13945  modirr  13947  sqrtdiv  15252  divrcnv  15838  gexdvds  19546  aaliou3lem8  26300  logdivlt  26575  cxp2limlem  26928  harmonicbnd4  26963  logexprlim  27178  bposlem7  27243  bposlem9  27245  chebbnd1lem3  27424  chebbnd1  27425  chto1ub  27429  chpo1ub  27433  vmadivsum  27435  rplogsumlem1  27437  dchrvmasumlema  27453  dchrvmasumiflem1  27454  dchrisum0fno1  27464  mulogsumlem  27484  logdivsum  27486  mulog2sumlem1  27487  selberg2lem  27503  selberg3lem1  27510  pntrmax  27517  pntpbnd1a  27538  pntpbnd1  27539  pntpbnd2  27540  pntpbnd  27541  pntibndlem3  27545  pntlem3  27562  pntleml  27564  pnt2  27566  subfacval3  34832  heiborlem6  37322  fldivmod  47669
  Copyright terms: Public domain W3C validator