| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rerpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
| Ref | Expression |
|---|---|
| rerpdivcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprene0 12976 | . 2 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 2 | redivcl 11908 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 4 | 1, 3 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℝcr 11074 0cc0 11075 / cdiv 11842 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-rp 12959 |
| This theorem is referenced by: ledivge1le 13031 rerpdivcld 13033 icccntr 13460 refldivcl 13792 fldivle 13800 ltdifltdiv 13803 modvalr 13841 flpmodeq 13843 mod0 13845 negmod0 13847 modlt 13849 moddiffl 13851 moddifz 13852 modid 13865 modcyc 13875 modadd1 13877 modmul1 13896 moddi 13911 modsubdir 13912 modirr 13914 sqrtdiv 15238 divrcnv 15825 gexdvds 19521 aaliou3lem8 26260 logdivlt 26537 cxp2limlem 26893 harmonicbnd4 26928 logexprlim 27143 bposlem7 27208 bposlem9 27210 chebbnd1lem3 27389 chebbnd1 27390 chto1ub 27394 chpo1ub 27398 vmadivsum 27400 rplogsumlem1 27402 dchrvmasumlema 27418 dchrvmasumiflem1 27419 dchrisum0fno1 27429 mulogsumlem 27449 logdivsum 27451 mulog2sumlem1 27452 selberg2lem 27468 selberg3lem1 27475 pntrmax 27482 pntpbnd1a 27503 pntpbnd1 27504 pntpbnd2 27505 pntpbnd 27506 pntibndlem3 27510 pntlem3 27527 pntleml 27529 pnt2 27531 subfacval3 35183 heiborlem6 37817 fldivmod 47343 ceildivmod 47344 |
| Copyright terms: Public domain | W3C validator |