![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rerpdivcl | Structured version Visualization version GIF version |
Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
Ref | Expression |
---|---|
rerpdivcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprene0 12093 | . 2 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
2 | redivcl 11036 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
3 | 2 | 3expb 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
4 | 1, 3 | sylan2 587 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ≠ wne 2971 (class class class)co 6878 ℝcr 10223 0cc0 10224 / cdiv 10976 ℝ+crp 12074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-rp 12075 |
This theorem is referenced by: ledivge1le 12146 rerpdivcld 12148 icccntr 12566 refldivcl 12879 fldivle 12887 ltdifltdiv 12890 modvalr 12926 flpmodeq 12928 mod0 12930 negmod0 12932 modlt 12934 moddiffl 12936 moddifz 12937 modid 12950 modcyc 12960 modadd1 12962 modmul1 12978 moddi 12993 modsubdir 12994 modirr 12996 sqrtdiv 14347 divrcnv 14922 gexdvds 18312 aaliou3lem8 24441 logdivlt 24708 cxp2limlem 25054 harmonicbnd4 25089 logexprlim 25302 bposlem7 25367 bposlem9 25369 chebbnd1lem3 25512 chebbnd1 25513 chto1ub 25517 chpo1ub 25521 vmadivsum 25523 rplogsumlem1 25525 dchrvmasumlema 25541 dchrvmasumiflem1 25542 dchrisum0fno1 25552 mulogsumlem 25572 logdivsum 25574 mulog2sumlem1 25575 selberg2lem 25591 selberg3lem1 25598 pntrmax 25605 pntpbnd1a 25626 pntpbnd1 25627 pntpbnd2 25628 pntpbnd 25629 pntibndlem3 25633 pntlem3 25650 pntleml 25652 pnt2 25654 subfacval3 31688 heiborlem6 34102 fldivmod 43112 |
Copyright terms: Public domain | W3C validator |