MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rerpdivcl Structured version   Visualization version   GIF version

Theorem rerpdivcl 12689
Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
rerpdivcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)

Proof of Theorem rerpdivcl
StepHypRef Expression
1 rprene0 12676 . 2 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 redivcl 11624 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
323expb 1118 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
41, 3sylan2 592 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  (class class class)co 7255  cr 10801  0cc0 10802   / cdiv 11562  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660
This theorem is referenced by:  ledivge1le  12730  rerpdivcld  12732  icccntr  13153  refldivcl  13471  fldivle  13479  ltdifltdiv  13482  modvalr  13520  flpmodeq  13522  mod0  13524  negmod0  13526  modlt  13528  moddiffl  13530  moddifz  13531  modid  13544  modcyc  13554  modadd1  13556  modmul1  13572  moddi  13587  modsubdir  13588  modirr  13590  sqrtdiv  14905  divrcnv  15492  gexdvds  19104  aaliou3lem8  25410  logdivlt  25681  cxp2limlem  26030  harmonicbnd4  26065  logexprlim  26278  bposlem7  26343  bposlem9  26345  chebbnd1lem3  26524  chebbnd1  26525  chto1ub  26529  chpo1ub  26533  vmadivsum  26535  rplogsumlem1  26537  dchrvmasumlema  26553  dchrvmasumiflem1  26554  dchrisum0fno1  26564  mulogsumlem  26584  logdivsum  26586  mulog2sumlem1  26587  selberg2lem  26603  selberg3lem1  26610  pntrmax  26617  pntpbnd1a  26638  pntpbnd1  26639  pntpbnd2  26640  pntpbnd  26641  pntibndlem3  26645  pntlem3  26662  pntleml  26664  pnt2  26666  subfacval3  33051  heiborlem6  35901  fldivmod  45752
  Copyright terms: Public domain W3C validator