| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rerpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
| Ref | Expression |
|---|---|
| rerpdivcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprene0 12929 | . 2 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 2 | redivcl 11861 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 4 | 1, 3 | sylan2 593 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℝcr 11027 0cc0 11028 / cdiv 11795 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-rp 12912 |
| This theorem is referenced by: ledivge1le 12984 rerpdivcld 12986 icccntr 13413 refldivcl 13745 fldivle 13753 ltdifltdiv 13756 modvalr 13794 flpmodeq 13796 mod0 13798 negmod0 13800 modlt 13802 moddiffl 13804 moddifz 13805 modid 13818 modcyc 13828 modadd1 13830 modmul1 13849 moddi 13864 modsubdir 13865 modirr 13867 sqrtdiv 15190 divrcnv 15777 gexdvds 19481 aaliou3lem8 26269 logdivlt 26546 cxp2limlem 26902 harmonicbnd4 26937 logexprlim 27152 bposlem7 27217 bposlem9 27219 chebbnd1lem3 27398 chebbnd1 27399 chto1ub 27403 chpo1ub 27407 vmadivsum 27409 rplogsumlem1 27411 dchrvmasumlema 27427 dchrvmasumiflem1 27428 dchrisum0fno1 27438 mulogsumlem 27458 logdivsum 27460 mulog2sumlem1 27461 selberg2lem 27477 selberg3lem1 27484 pntrmax 27491 pntpbnd1a 27512 pntpbnd1 27513 pntpbnd2 27514 pntpbnd 27515 pntibndlem3 27519 pntlem3 27536 pntleml 27538 pnt2 27540 subfacval3 35161 heiborlem6 37795 fldivmod 47323 ceildivmod 47324 |
| Copyright terms: Public domain | W3C validator |