Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
class class class wbr 5141 (class class class)co 7405
ℝcr 11111 0cc0 11112
1c1 11113 + caddc 11115 ≤ cle 11253
ℝ+crp 12980 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-rp 12981 |
This theorem is referenced by: lo1bddrp
15475 o1rlimmul
15569 mertenslem1
15836 mertenslem2
15837 nlmvscnlem2
24557 nlmvscnlem1
24558 nghmcn
24617 cnheibor
24836 ipcnlem2
25127 ipcnlem1
25128 pjthlem1
25320 itg2const2
25626 itgulm
26299 abelthlem8
26331 loglesqrt
26648 logdiflbnd
26882 ftalem4
26963 logfacrlim
27112 dchrisumlem3
27379 pntrsumo1
27453 smcnlem
30459 pjhthlem1
31153 faclimlem1
35246 faclimlem3
35248 faclim
35249 iprodfac
35250 isbnd3
37165 totbndbnd
37170 rrntotbnd
37217 aks4d1p1p7
41455 wallispilem4
45353 wallispi
45355 wallispi2lem1
45356 stirlinglem1
45359 stirlinglem4
45362 stirlinglem6
45364 stirlinglem10
45368 stirlinglem11
45369 stirlinglem12
45370 stirlinglem13
45371 fourierdlem30
45422 fourierdlem77
45468 |