| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ge0p1rpd | Structured version Visualization version GIF version | ||
| Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ge0p1rp.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| ge0p1rpd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ge0p1rp.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | ge0p1rp 12984 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-rp 12952 |
| This theorem is referenced by: lo1bddrp 15491 o1rlimmul 15585 mertenslem1 15850 mertenslem2 15851 nlmvscnlem2 24573 nlmvscnlem1 24574 nghmcn 24633 cnheibor 24854 ipcnlem2 25144 ipcnlem1 25145 pjthlem1 25337 itg2const2 25642 itgulm 26317 abelthlem8 26349 loglesqrt 26671 logdiflbnd 26905 ftalem4 26986 logfacrlim 27135 dchrisumlem3 27402 pntrsumo1 27476 smcnlem 30626 pjhthlem1 31320 faclimlem1 35730 faclimlem3 35732 faclim 35733 iprodfac 35734 isbnd3 37778 totbndbnd 37783 rrntotbnd 37830 aks4d1p1p7 42062 wallispilem4 46066 wallispi 46068 wallispi2lem1 46069 stirlinglem1 46072 stirlinglem4 46075 stirlinglem6 46077 stirlinglem10 46081 stirlinglem11 46082 stirlinglem12 46083 stirlinglem13 46084 fourierdlem30 46135 fourierdlem77 46181 |
| Copyright terms: Public domain | W3C validator |