| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ge0p1rpd | Structured version Visualization version GIF version | ||
| Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ge0p1rp.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| ge0p1rpd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ge0p1rp.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 3 | ge0p1rp 12960 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 ≤ cle 11185 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-rp 12928 |
| This theorem is referenced by: lo1bddrp 15467 o1rlimmul 15561 mertenslem1 15826 mertenslem2 15827 nlmvscnlem2 24606 nlmvscnlem1 24607 nghmcn 24666 cnheibor 24887 ipcnlem2 25177 ipcnlem1 25178 pjthlem1 25370 itg2const2 25675 itgulm 26350 abelthlem8 26382 loglesqrt 26704 logdiflbnd 26938 ftalem4 27019 logfacrlim 27168 dchrisumlem3 27435 pntrsumo1 27509 smcnlem 30676 pjhthlem1 31370 faclimlem1 35723 faclimlem3 35725 faclim 35726 iprodfac 35727 isbnd3 37771 totbndbnd 37776 rrntotbnd 37823 aks4d1p1p7 42055 wallispilem4 46059 wallispi 46061 wallispi2lem1 46062 stirlinglem1 46065 stirlinglem4 46068 stirlinglem6 46070 stirlinglem10 46074 stirlinglem11 46075 stirlinglem12 46076 stirlinglem13 46077 fourierdlem30 46128 fourierdlem77 46174 |
| Copyright terms: Public domain | W3C validator |