MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0p1rpd Structured version   Visualization version   GIF version

Theorem ge0p1rpd 13025
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
ge0p1rp.2 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
ge0p1rpd (𝜑 → (𝐴 + 1) ∈ ℝ+)

Proof of Theorem ge0p1rpd
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ge0p1rp.2 . 2 (𝜑 → 0 ≤ 𝐴)
3 ge0p1rp 12984 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 + 1) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cle 11209  +crp 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-rp 12952
This theorem is referenced by:  lo1bddrp  15491  o1rlimmul  15585  mertenslem1  15850  mertenslem2  15851  nlmvscnlem2  24573  nlmvscnlem1  24574  nghmcn  24633  cnheibor  24854  ipcnlem2  25144  ipcnlem1  25145  pjthlem1  25337  itg2const2  25642  itgulm  26317  abelthlem8  26349  loglesqrt  26671  logdiflbnd  26905  ftalem4  26986  logfacrlim  27135  dchrisumlem3  27402  pntrsumo1  27476  smcnlem  30626  pjhthlem1  31320  faclimlem1  35730  faclimlem3  35732  faclim  35733  iprodfac  35734  isbnd3  37778  totbndbnd  37783  rrntotbnd  37830  aks4d1p1p7  42062  wallispilem4  46066  wallispi  46068  wallispi2lem1  46069  stirlinglem1  46072  stirlinglem4  46075  stirlinglem6  46077  stirlinglem10  46081  stirlinglem11  46082  stirlinglem12  46083  stirlinglem13  46084  fourierdlem30  46135  fourierdlem77  46181
  Copyright terms: Public domain W3C validator