Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ge0p1rpd | Structured version Visualization version GIF version |
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ge0p1rp.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
ge0p1rpd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ge0p1rp.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | ge0p1rp 12761 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 ≤ cle 11010 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-rp 12731 |
This theorem is referenced by: lo1bddrp 15234 o1rlimmul 15328 mertenslem1 15596 mertenslem2 15597 nlmvscnlem2 23849 nlmvscnlem1 23850 nghmcn 23909 cnheibor 24118 ipcnlem2 24408 ipcnlem1 24409 pjthlem1 24601 itg2const2 24906 itgulm 25567 abelthlem8 25598 loglesqrt 25911 logdiflbnd 26144 ftalem4 26225 logfacrlim 26372 dchrisumlem3 26639 pntrsumo1 26713 smcnlem 29059 pjhthlem1 29753 faclimlem1 33709 faclimlem3 33711 faclim 33712 iprodfac 33713 isbnd3 35942 totbndbnd 35947 rrntotbnd 35994 aks4d1p1p7 40082 wallispilem4 43609 wallispi 43611 wallispi2lem1 43612 stirlinglem1 43615 stirlinglem4 43618 stirlinglem6 43620 stirlinglem10 43624 stirlinglem11 43625 stirlinglem12 43626 stirlinglem13 43627 fourierdlem30 43678 fourierdlem77 43724 |
Copyright terms: Public domain | W3C validator |