MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0p1rpd Structured version   Visualization version   GIF version

Theorem ge0p1rpd 12988
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
ge0p1rp.2 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
ge0p1rpd (𝜑 → (𝐴 + 1) ∈ ℝ+)

Proof of Theorem ge0p1rpd
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ge0p1rp.2 . 2 (𝜑 → 0 ≤ 𝐴)
3 ge0p1rp 12947 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
41, 2, 3syl2anc 585 1 (𝜑 → (𝐴 + 1) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5106  (class class class)co 7358  cr 11051  0cc0 11052  1c1 11053   + caddc 11055  cle 11191  +crp 12916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-rp 12917
This theorem is referenced by:  lo1bddrp  15408  o1rlimmul  15502  mertenslem1  15770  mertenslem2  15771  nlmvscnlem2  24052  nlmvscnlem1  24053  nghmcn  24112  cnheibor  24321  ipcnlem2  24611  ipcnlem1  24612  pjthlem1  24804  itg2const2  25109  itgulm  25770  abelthlem8  25801  loglesqrt  26114  logdiflbnd  26347  ftalem4  26428  logfacrlim  26575  dchrisumlem3  26842  pntrsumo1  26916  smcnlem  29642  pjhthlem1  30336  faclimlem1  34319  faclimlem3  34321  faclim  34322  iprodfac  34323  isbnd3  36246  totbndbnd  36251  rrntotbnd  36298  aks4d1p1p7  40534  wallispilem4  44316  wallispi  44318  wallispi2lem1  44319  stirlinglem1  44322  stirlinglem4  44325  stirlinglem6  44327  stirlinglem10  44331  stirlinglem11  44332  stirlinglem12  44333  stirlinglem13  44334  fourierdlem30  44385  fourierdlem77  44431
  Copyright terms: Public domain W3C validator