MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0p1rpd Structured version   Visualization version   GIF version

Theorem ge0p1rpd 12731
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
ge0p1rp.2 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
ge0p1rpd (𝜑 → (𝐴 + 1) ∈ ℝ+)

Proof of Theorem ge0p1rpd
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ge0p1rp.2 . 2 (𝜑 → 0 ≤ 𝐴)
3 ge0p1rp 12690 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴 + 1) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-rp 12660
This theorem is referenced by:  lo1bddrp  15162  o1rlimmul  15256  mertenslem1  15524  mertenslem2  15525  nlmvscnlem2  23755  nlmvscnlem1  23756  nghmcn  23815  cnheibor  24024  ipcnlem2  24313  ipcnlem1  24314  pjthlem1  24506  itg2const2  24811  itgulm  25472  abelthlem8  25503  loglesqrt  25816  logdiflbnd  26049  ftalem4  26130  logfacrlim  26277  dchrisumlem3  26544  pntrsumo1  26618  smcnlem  28960  pjhthlem1  29654  faclimlem1  33615  faclimlem3  33617  faclim  33618  iprodfac  33619  isbnd3  35869  totbndbnd  35874  rrntotbnd  35921  aks4d1p1p7  40010  wallispilem4  43499  wallispi  43501  wallispi2lem1  43502  stirlinglem1  43505  stirlinglem4  43508  stirlinglem6  43510  stirlinglem10  43514  stirlinglem11  43515  stirlinglem12  43516  stirlinglem13  43517  fourierdlem30  43568  fourierdlem77  43614
  Copyright terms: Public domain W3C validator