![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ge0xmulcl | Structured version Visualization version GIF version |
Description: The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ge0xmulcl | โข ((๐ด โ (0[,]+โ) โง ๐ต โ (0[,]+โ)) โ (๐ด ยทe ๐ต) โ (0[,]+โ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxrge0 13440 | . 2 โข (๐ด โ (0[,]+โ) โ (๐ด โ โ* โง 0 โค ๐ด)) | |
2 | elxrge0 13440 | . 2 โข (๐ต โ (0[,]+โ) โ (๐ต โ โ* โง 0 โค ๐ต)) | |
3 | xmulcl 13258 | . . . 4 โข ((๐ด โ โ* โง ๐ต โ โ*) โ (๐ด ยทe ๐ต) โ โ*) | |
4 | 3 | ad2ant2r 744 | . . 3 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต)) โ (๐ด ยทe ๐ต) โ โ*) |
5 | xmulge0 13269 | . . 3 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต)) โ 0 โค (๐ด ยทe ๐ต)) | |
6 | elxrge0 13440 | . . 3 โข ((๐ด ยทe ๐ต) โ (0[,]+โ) โ ((๐ด ยทe ๐ต) โ โ* โง 0 โค (๐ด ยทe ๐ต))) | |
7 | 4, 5, 6 | sylanbrc 582 | . 2 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต)) โ (๐ด ยทe ๐ต) โ (0[,]+โ)) |
8 | 1, 2, 7 | syl2anb 597 | 1 โข ((๐ด โ (0[,]+โ) โง ๐ต โ (0[,]+โ)) โ (๐ด ยทe ๐ต) โ (0[,]+โ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 โ wcel 2098 class class class wbr 5141 (class class class)co 7405 0cc0 11112 +โcpnf 11249 โ*cxr 11251 โค cle 11253 ยทe cxmu 13097 [,]cicc 13333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-xmul 13100 df-icc 13337 |
This theorem is referenced by: xrge0adddir 32696 xrge0slmod 32966 xrge0mulc1cn 33451 sitmcl 33880 |
Copyright terms: Public domain | W3C validator |