| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnrebl | Structured version Visualization version GIF version | ||
| Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| opnrebl | ⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 2 | 1 | rexmet 24679 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) |
| 3 | eqid 2729 | . . . . 5 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
| 4 | 1, 3 | tgioo 24684 | . . . 4 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 5 | 4 | elmopn2 24333 | . . 3 ⊢ (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴))) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)) |
| 7 | ssel2 3941 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
| 8 | rpre 12960 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
| 9 | 1 | bl2ioo 24680 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 10 | 8, 9 | sylan2 593 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 11 | 10 | sseq1d 3978 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| 12 | 11 | rexbidva 3155 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| 13 | 7, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| 14 | 13 | ralbidva 3154 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| 15 | 14 | pm5.32i 574 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| 16 | 6, 15 | bitri 275 | 1 ⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 × cxp 5636 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 + caddc 11071 − cmin 11405 ℝ+crp 12951 (,)cioo 13306 abscabs 15200 topGenctg 17400 ∞Metcxmet 21249 ballcbl 21251 MetOpencmopn 21254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-bases 22833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |