Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl Structured version   Visualization version   GIF version

Theorem opnrebl 35713
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl (𝐴 ∈ (topGenβ€˜ran (,)) ↔ (𝐴 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem opnrebl
StepHypRef Expression
1 eqid 2726 . . . 4 ((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)) = ((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ))
21rexmet 24658 . . 3 ((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)) ∈ (∞Metβ€˜β„)
3 eqid 2726 . . . . 5 (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ))) = (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))
41, 3tgioo 24663 . . . 4 (topGenβ€˜ran (,)) = (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))
54elmopn2 24302 . . 3 (((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)) ∈ (∞Metβ€˜β„) β†’ (𝐴 ∈ (topGenβ€˜ran (,)) ↔ (𝐴 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴)))
62, 5ax-mp 5 . 2 (𝐴 ∈ (topGenβ€˜ran (,)) ↔ (𝐴 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴))
7 ssel2 3972 . . . . 5 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ 𝐴) β†’ π‘₯ ∈ ℝ)
8 rpre 12985 . . . . . . . 8 (𝑦 ∈ ℝ+ β†’ 𝑦 ∈ ℝ)
91bl2ioo 24659 . . . . . . . 8 ((π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ) β†’ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) = ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)))
108, 9sylan2 592 . . . . . . 7 ((π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ+) β†’ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) = ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)))
1110sseq1d 4008 . . . . . 6 ((π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ+) β†’ ((π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴 ↔ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
1211rexbidva 3170 . . . . 5 (π‘₯ ∈ ℝ β†’ (βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴 ↔ βˆƒπ‘¦ ∈ ℝ+ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
137, 12syl 17 . . . 4 ((𝐴 βŠ† ℝ ∧ π‘₯ ∈ 𝐴) β†’ (βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴 ↔ βˆƒπ‘¦ ∈ ℝ+ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
1413ralbidva 3169 . . 3 (𝐴 βŠ† ℝ β†’ (βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
1514pm5.32i 574 . 2 ((𝐴 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜((abs ∘ βˆ’ ) β†Ύ (ℝ Γ— ℝ)))𝑦) βŠ† 𝐴) ↔ (𝐴 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
166, 15bitri 275 1 (𝐴 ∈ (topGenβ€˜ran (,)) ↔ (𝐴 βŠ† ℝ ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ ((π‘₯ βˆ’ 𝑦)(,)(π‘₯ + 𝑦)) βŠ† 𝐴))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  βˆƒwrex 3064   βŠ† wss 3943   Γ— cxp 5667  ran crn 5670   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6536  (class class class)co 7404  β„cr 11108   + caddc 11112   βˆ’ cmin 11445  β„+crp 12977  (,)cioo 13327  abscabs 15185  topGenctg 17390  βˆžMetcxmet 21221  ballcbl 21223  MetOpencmopn 21226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-q 12934  df-rp 12978  df-xneg 13095  df-xadd 13096  df-xmul 13097  df-ioo 13331  df-seq 13970  df-exp 14031  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-topgen 17396  df-psmet 21228  df-xmet 21229  df-met 21230  df-bl 21231  df-mopn 21232  df-bases 22800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator