Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnrebl | Structured version Visualization version GIF version |
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
opnrebl | ⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | rexmet 23492 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) |
3 | eqid 2758 | . . . . 5 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
4 | 1, 3 | tgioo 23497 | . . . 4 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
5 | 4 | elmopn2 23147 | . . 3 ⊢ (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴))) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)) |
7 | ssel2 3887 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
8 | rpre 12438 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
9 | 1 | bl2ioo 23493 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
10 | 8, 9 | sylan2 595 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
11 | 10 | sseq1d 3923 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
12 | 11 | rexbidva 3220 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
13 | 7, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
14 | 13 | ralbidva 3125 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
15 | 14 | pm5.32i 578 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
16 | 6, 15 | bitri 278 | 1 ⊢ (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ⊆ wss 3858 × cxp 5522 ran crn 5525 ↾ cres 5526 ∘ ccom 5528 ‘cfv 6335 (class class class)co 7150 ℝcr 10574 + caddc 10578 − cmin 10908 ℝ+crp 12430 (,)cioo 12779 abscabs 14641 topGenctg 16769 ∞Metcxmet 20151 ballcbl 20153 MetOpencmopn 20156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-topgen 16775 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-bases 21646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |