Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > halfpos | Structured version Visualization version GIF version |
Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
halfpos | ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpos2 12148 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2))) | |
2 | rehalfcl 12145 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
3 | 2, 2 | ltaddposd 11505 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < (𝐴 / 2) ↔ (𝐴 / 2) < ((𝐴 / 2) + (𝐴 / 2)))) |
4 | recn 10908 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
5 | 2halves 12147 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
7 | 6 | breq2d 5087 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 / 2) < ((𝐴 / 2) + (𝐴 / 2)) ↔ (𝐴 / 2) < 𝐴)) |
8 | 1, 3, 7 | 3bitrd 304 | 1 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7260 ℂcc 10816 ℝcr 10817 0cc0 10818 + caddc 10821 < clt 10956 / cdiv 11578 2c2 11974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-div 11579 df-2 11982 |
This theorem is referenced by: nominpos 12156 rphalflt 12704 ssblex 23525 stoweidlem52 43525 fourierdlem103 43682 fourierdlem104 43683 |
Copyright terms: Public domain | W3C validator |