MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssblex Structured version   Visualization version   GIF version

Theorem ssblex 24316
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 770 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 13007 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 772 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
42, 3ifcld 4535 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+)
54rpred 12995 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ)
62rpred 12995 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
71rpred 12995 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
83rpred 12995 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
9 min1 13149 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
106, 8, 9syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
111rpgt0d 12998 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
12 halfpos 12412 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
137, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1411, 13mpbid 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
155, 6, 7, 10, 14lelttrd 11332 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅)
16 simpl 482 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
174rpxrd 12996 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*)
183rpxrd 12996 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
19 min2 13150 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
206, 8, 19syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
21 ssbl 24311 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*𝑆 ∈ ℝ*) ∧ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
2216, 17, 18, 20, 21syl121anc 1377 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
23 breq1 5110 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑥 < 𝑅 ↔ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅))
24 oveq2 7395 . . . . 5 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)))
2524sseq1d 3978 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆)))
2623, 25anbi12d 632 . . 3 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))))
2726rspcev 3588 . 2 ((if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+ ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
284, 15, 22, 27syl12anc 836 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3914  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  +crp 12951  ∞Metcxmet 21249  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-psmet 21256  df-xmet 21257  df-bl 21259
This theorem is referenced by:  mopni3  24382
  Copyright terms: Public domain W3C validator