MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssblex Structured version   Visualization version   GIF version

Theorem ssblex 24459
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 770 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 13111 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 772 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
42, 3ifcld 4594 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+)
54rpred 13099 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ)
62rpred 13099 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
71rpred 13099 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
83rpred 13099 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
9 min1 13251 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
106, 8, 9syl2anc 583 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
111rpgt0d 13102 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
12 halfpos 12523 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
137, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1411, 13mpbid 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
155, 6, 7, 10, 14lelttrd 11448 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅)
16 simpl 482 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
174rpxrd 13100 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*)
183rpxrd 13100 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
19 min2 13252 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
206, 8, 19syl2anc 583 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
21 ssbl 24454 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*𝑆 ∈ ℝ*) ∧ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
2216, 17, 18, 20, 21syl121anc 1375 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
23 breq1 5169 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑥 < 𝑅 ↔ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅))
24 oveq2 7456 . . . . 5 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)))
2524sseq1d 4040 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆)))
2623, 25anbi12d 631 . . 3 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))))
2726rspcev 3635 . 2 ((if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+ ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
284, 15, 22, 27syl12anc 836 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  +crp 13057  ∞Metcxmet 21372  ballcbl 21374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-psmet 21379  df-xmet 21380  df-bl 21382
This theorem is referenced by:  mopni3  24528
  Copyright terms: Public domain W3C validator