MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssblex Structured version   Visualization version   GIF version

Theorem ssblex 24454
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 771 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 13087 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 773 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
42, 3ifcld 4577 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+)
54rpred 13075 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ)
62rpred 13075 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
71rpred 13075 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
83rpred 13075 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
9 min1 13228 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
106, 8, 9syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
111rpgt0d 13078 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
12 halfpos 12494 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
137, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1411, 13mpbid 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
155, 6, 7, 10, 14lelttrd 11417 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅)
16 simpl 482 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
174rpxrd 13076 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*)
183rpxrd 13076 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
19 min2 13229 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
206, 8, 19syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
21 ssbl 24449 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*𝑆 ∈ ℝ*) ∧ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
2216, 17, 18, 20, 21syl121anc 1374 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
23 breq1 5151 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑥 < 𝑅 ↔ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅))
24 oveq2 7439 . . . . 5 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)))
2524sseq1d 4027 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆)))
2623, 25anbi12d 632 . . 3 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))))
2726rspcev 3622 . 2 ((if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+ ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
284, 15, 22, 27syl12anc 837 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963  ifcif 4531   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  *cxr 11292   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  +crp 13032  ∞Metcxmet 21367  ballcbl 21369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-psmet 21374  df-xmet 21375  df-bl 21377
This theorem is referenced by:  mopni3  24523
  Copyright terms: Public domain W3C validator