MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssblex Structured version   Visualization version   GIF version

Theorem ssblex 23765
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 769 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 12961 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 771 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
42, 3ifcld 4530 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+)
54rpred 12949 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ)
62rpred 12949 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
71rpred 12949 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
83rpred 12949 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
9 min1 13100 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
106, 8, 9syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ (𝑅 / 2))
111rpgt0d 12952 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
12 halfpos 12379 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
137, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1411, 13mpbid 231 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
155, 6, 7, 10, 14lelttrd 11309 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅)
16 simpl 483 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
174rpxrd 12950 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*)
183rpxrd 12950 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
19 min2 13101 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
206, 8, 19syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆)
21 ssbl 23760 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ*𝑆 ∈ ℝ*) ∧ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ≤ 𝑆) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
2216, 17, 18, 20, 21syl121anc 1375 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))
23 breq1 5106 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑥 < 𝑅 ↔ if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅))
24 oveq2 7361 . . . . 5 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)))
2524sseq1d 3973 . . . 4 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆)))
2623, 25anbi12d 631 . . 3 (𝑥 = if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))))
2726rspcev 3579 . 2 ((if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) ∈ ℝ+ ∧ (if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆) < 𝑅 ∧ (𝑃(ball‘𝐷)if((𝑅 / 2) ≤ 𝑆, (𝑅 / 2), 𝑆)) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
284, 15, 22, 27syl12anc 835 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3071  wss 3908  ifcif 4484   class class class wbr 5103  cfv 6493  (class class class)co 7353  cr 11046  0cc0 11047  *cxr 11184   < clt 11185  cle 11186   / cdiv 11808  2c2 12204  +crp 12907  ∞Metcxmet 20766  ballcbl 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7917  df-2nd 7918  df-er 8644  df-map 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-2 12212  df-rp 12908  df-xneg 13025  df-xadd 13026  df-xmul 13027  df-psmet 20773  df-xmet 20774  df-bl 20776
This theorem is referenced by:  mopni3  23834
  Copyright terms: Public domain W3C validator