![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > idleop | Structured version Visualization version GIF version |
Description: The identity operator is a positive operator. Part of Example 12.2(i) in [Young] p. 142. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idleop | ⊢ 0hop ≤op Iop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0hmop 31885 | . . 3 ⊢ 0hop ∈ HrmOp | |
2 | idhmop 31884 | . . 3 ⊢ Iop ∈ HrmOp | |
3 | leop2 32026 | . . 3 ⊢ (( 0hop ∈ HrmOp ∧ Iop ∈ HrmOp) → ( 0hop ≤op Iop ↔ ∀𝑥 ∈ ℋ (( 0hop ‘𝑥) ·ih 𝑥) ≤ (( Iop ‘𝑥) ·ih 𝑥))) | |
4 | 1, 2, 3 | mp2an 690 | . 2 ⊢ ( 0hop ≤op Iop ↔ ∀𝑥 ∈ ℋ (( 0hop ‘𝑥) ·ih 𝑥) ≤ (( Iop ‘𝑥) ·ih 𝑥)) |
5 | hiidge0 31000 | . . 3 ⊢ (𝑥 ∈ ℋ → 0 ≤ (𝑥 ·ih 𝑥)) | |
6 | ho0val 31652 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ( 0hop ‘𝑥) = 0ℎ) | |
7 | 6 | oveq1d 7434 | . . . 4 ⊢ (𝑥 ∈ ℋ → (( 0hop ‘𝑥) ·ih 𝑥) = (0ℎ ·ih 𝑥)) |
8 | hi01 30998 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0ℎ ·ih 𝑥) = 0) | |
9 | 7, 8 | eqtrd 2765 | . . 3 ⊢ (𝑥 ∈ ℋ → (( 0hop ‘𝑥) ·ih 𝑥) = 0) |
10 | hoival 31657 | . . . 4 ⊢ (𝑥 ∈ ℋ → ( Iop ‘𝑥) = 𝑥) | |
11 | 10 | oveq1d 7434 | . . 3 ⊢ (𝑥 ∈ ℋ → (( Iop ‘𝑥) ·ih 𝑥) = (𝑥 ·ih 𝑥)) |
12 | 5, 9, 11 | 3brtr4d 5181 | . 2 ⊢ (𝑥 ∈ ℋ → (( 0hop ‘𝑥) ·ih 𝑥) ≤ (( Iop ‘𝑥) ·ih 𝑥)) |
13 | 4, 12 | mprgbir 3057 | 1 ⊢ 0hop ≤op Iop |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∀wral 3050 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 0cc0 11145 ≤ cle 11286 ℋchba 30821 ·ih csp 30824 0ℎc0v 30826 0hop ch0o 30845 Iop chio 30846 HrmOpcho 30852 ≤op cleo 30860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cc 10465 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 ax-addf 11224 ax-mulf 11225 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 ax-his4 30987 ax-hcompl 31104 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-fi 9441 df-sup 9472 df-inf 9473 df-oi 9540 df-card 9969 df-acn 9972 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13798 df-seq 14008 df-exp 14068 df-hash 14334 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-clim 15476 df-rlim 15477 df-sum 15677 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-starv 17267 df-sca 17268 df-vsca 17269 df-ip 17270 df-tset 17271 df-ple 17272 df-ds 17274 df-unif 17275 df-hom 17276 df-cco 17277 df-rest 17423 df-topn 17424 df-0g 17442 df-gsum 17443 df-topgen 17444 df-pt 17445 df-prds 17448 df-xrs 17503 df-qtop 17508 df-imas 17509 df-xps 17511 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-submnd 18760 df-mulg 19048 df-cntz 19297 df-cmn 19766 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22857 df-topon 22874 df-topsp 22896 df-bases 22910 df-cld 22984 df-ntr 22985 df-cls 22986 df-nei 23063 df-cn 23192 df-cnp 23193 df-lm 23194 df-haus 23280 df-tx 23527 df-hmeo 23720 df-fil 23811 df-fm 23903 df-flim 23904 df-flf 23905 df-xms 24287 df-ms 24288 df-tms 24289 df-cfil 25244 df-cau 25245 df-cmet 25246 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-ims 30503 df-dip 30603 df-ssp 30624 df-ph 30715 df-cbn 30765 df-hnorm 30870 df-hba 30871 df-hvsub 30873 df-hlim 30874 df-hcau 30875 df-sh 31109 df-ch 31123 df-oc 31154 df-ch0 31155 df-shs 31210 df-pjh 31297 df-hosum 31632 df-homul 31633 df-hodif 31634 df-h0op 31650 df-iop 31651 df-hmop 31746 df-leop 31754 |
This theorem is referenced by: opsqrlem6 32047 |
Copyright terms: Public domain | W3C validator |