MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenuni Structured version   Visualization version   GIF version

Theorem kgenuni 23457
Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
kgenuni.1 𝑋 = 𝐽
Assertion
Ref Expression
kgenuni (𝐽 ∈ Top → 𝑋 = (𝑘Gen‘𝐽))

Proof of Theorem kgenuni
StepHypRef Expression
1 kgenuni.1 . . . 4 𝑋 = 𝐽
21toptopon 22835 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 kgentopon 23456 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
42, 3sylbi 217 . 2 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
5 toponuni 22832 . 2 ((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) → 𝑋 = (𝑘Gen‘𝐽))
64, 5syl 17 1 (𝐽 ∈ Top → 𝑋 = (𝑘Gen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   cuni 4860  cfv 6488  Topctop 22811  TopOnctopon 22828  𝑘Genckgen 23451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-en 8878  df-fin 8881  df-fi 9304  df-rest 17330  df-topgen 17351  df-top 22812  df-topon 22829  df-bases 22864  df-cmp 23305  df-kgen 23452
This theorem is referenced by:  kgencmp2  23464  llycmpkgen2  23468  1stckgen  23472  txkgen  23570  qtopkgen  23628
  Copyright terms: Public domain W3C validator