MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenuni Structured version   Visualization version   GIF version

Theorem kgenuni 23534
Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
kgenuni.1 𝑋 = 𝐽
Assertion
Ref Expression
kgenuni (𝐽 ∈ Top → 𝑋 = (𝑘Gen‘𝐽))

Proof of Theorem kgenuni
StepHypRef Expression
1 kgenuni.1 . . . 4 𝑋 = 𝐽
21toptopon 22910 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 kgentopon 23533 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
42, 3sylbi 216 . 2 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
5 toponuni 22907 . 2 ((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) → 𝑋 = (𝑘Gen‘𝐽))
64, 5syl 17 1 (𝐽 ∈ Top → 𝑋 = (𝑘Gen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   cuni 4913  cfv 6554  Topctop 22886  TopOnctopon 22903  𝑘Genckgen 23528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-en 8975  df-fin 8978  df-fi 9454  df-rest 17437  df-topgen 17458  df-top 22887  df-topon 22904  df-bases 22940  df-cmp 23382  df-kgen 23529
This theorem is referenced by:  kgencmp2  23541  llycmpkgen2  23545  1stckgen  23549  txkgen  23647  qtopkgen  23705
  Copyright terms: Public domain W3C validator