Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lediv2aALT Structured version   Visualization version   GIF version

Theorem lediv2aALT 35281
Description: Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
lediv2aALT (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))

Proof of Theorem lediv2aALT
StepHypRef Expression
1 gt0ne0 11710 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
2 rereccl 11963 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
31, 2syldan 590 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
4 gt0ne0 11710 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5 rereccl 11963 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
64, 5syldan 590 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
73, 6anim12i 612 . . . . . 6 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ))
87ancoms 458 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ))
983adant3 1130 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ))
10 simp3 1136 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
11 df-3an 1087 . . . 4 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ↔ (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)))
129, 10, 11sylanbrc 582 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)))
13 lemul2a 12100 . . . 4 ((((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (1 / 𝐵) ≤ (1 / 𝐴)) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))
1413ex 412 . . 3 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
1512, 14syl 17 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
16 lerec 12128 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
17163adant3 1130 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
18 recn 11229 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1918adantr 480 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → 𝐶 ∈ ℂ)
20 recn 11229 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
2221, 1jca 511 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
2319, 22anim12i 612 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)))
24 3anass 1093 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)))
2523, 24sylibr 233 . . . . . 6 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 divrec 11919 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
2725, 26syl 17 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
2827ancoms 458 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
29283adant1 1128 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
30 recn 11229 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
3231, 4jca 511 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3319, 32anim12i 612 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)))
34 3anass 1093 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)))
3533, 34sylibr 233 . . . . . 6 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
36 divrec 11919 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
3735, 36syl 17 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
3837ancoms 458 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
39383adant2 1129 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
4029, 39breq12d 5161 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
4115, 17, 403imtr4d 294 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  (class class class)co 7420  cc 11137  cr 11138  0cc0 11139  1c1 11140   · cmul 11144   < clt 11279  cle 11280   / cdiv 11902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator