Proof of Theorem lediv2aALT
| Step | Hyp | Ref
| Expression |
| 1 | | gt0ne0 11702 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ≠ 0) |
| 2 | | rereccl 11959 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈
ℝ) |
| 3 | 1, 2 | syldan 591 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (1 / 𝐵) ∈
ℝ) |
| 4 | | gt0ne0 11702 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ≠ 0) |
| 5 | | rereccl 11959 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℝ) |
| 6 | 4, 5 | syldan 591 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
| 7 | 3, 6 | anim12i 613 |
. . . . . 6
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈
ℝ)) |
| 8 | 7 | ancoms 458 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈
ℝ)) |
| 9 | 8 | 3adant3 1132 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈
ℝ)) |
| 10 | | simp3 1138 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 11 | | df-3an 1088 |
. . . 4
⊢ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) ↔ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ) ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶))) |
| 12 | 9, 10, 11 | sylanbrc 583 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶))) |
| 13 | | lemul2a 12096 |
. . . 4
⊢ ((((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) ∧ (1 / 𝐵) ≤ (1 / 𝐴)) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))) |
| 14 | 13 | ex 412 |
. . 3
⊢ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
| 15 | 12, 14 | syl 17 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
| 16 | | lerec 12125 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
| 17 | 16 | 3adant3 1132 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
| 18 | | recn 11219 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) → 𝐶 ∈ ℂ) |
| 20 | | recn 11219 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ∈ ℂ) |
| 22 | 21, 1 | jca 511 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
| 23 | 19, 22 | anim12i 613 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) |
| 24 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) |
| 25 | 23, 24 | sylibr 234 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
| 26 | | divrec 11912 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
| 27 | 25, 26 | syl 17 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
| 28 | 27 | ancoms 458 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
| 29 | 28 | 3adant1 1130 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
| 30 | | recn 11219 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
| 32 | 31, 4 | jca 511 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| 33 | 19, 32 | anim12i 613 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))) |
| 34 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))) |
| 35 | 33, 34 | sylibr 234 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| 36 | | divrec 11912 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
| 37 | 35, 36 | syl 17 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
| 38 | 37 | ancoms 458 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
| 39 | 38 | 3adant2 1131 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
| 40 | 29, 39 | breq12d 5132 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
| 41 | 15, 17, 40 | 3imtr4d 294 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) |