Proof of Theorem lediv2aALT
Step | Hyp | Ref
| Expression |
1 | | gt0ne0 11440 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ≠ 0) |
2 | | rereccl 11693 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈
ℝ) |
3 | 1, 2 | syldan 591 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (1 / 𝐵) ∈
ℝ) |
4 | | gt0ne0 11440 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ≠ 0) |
5 | | rereccl 11693 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℝ) |
6 | 4, 5 | syldan 591 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
7 | 3, 6 | anim12i 613 |
. . . . . 6
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈
ℝ)) |
8 | 7 | ancoms 459 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈
ℝ)) |
9 | 8 | 3adant3 1131 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈
ℝ)) |
10 | | simp3 1137 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
11 | | df-3an 1088 |
. . . 4
⊢ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) ↔ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ) ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶))) |
12 | 9, 10, 11 | sylanbrc 583 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 /
𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶))) |
13 | | lemul2a 11830 |
. . . 4
⊢ ((((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) ∧ (1 / 𝐵) ≤ (1 / 𝐴)) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))) |
14 | 13 | ex 413 |
. . 3
⊢ (((1 /
𝐵) ∈ ℝ ∧ (1
/ 𝐴) ∈ ℝ ∧
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
15 | 12, 14 | syl 17 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
16 | | lerec 11858 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
17 | 16 | 3adant3 1131 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
18 | | recn 10961 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) |
19 | 18 | adantr 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) → 𝐶 ∈ ℂ) |
20 | | recn 10961 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
21 | 20 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ∈ ℂ) |
22 | 21, 1 | jca 512 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
23 | 19, 22 | anim12i 613 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) |
24 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) |
25 | 23, 24 | sylibr 233 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
26 | | divrec 11649 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
28 | 27 | ancoms 459 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
29 | 28 | 3adant1 1129 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
30 | | recn 10961 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
32 | 31, 4 | jca 512 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
33 | 19, 32 | anim12i 613 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))) |
34 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))) |
35 | 33, 34 | sylibr 233 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
36 | | divrec 11649 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
37 | 35, 36 | syl 17 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
38 | 37 | ancoms 459 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
39 | 38 | 3adant2 1130 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
40 | 29, 39 | breq12d 5087 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))) |
41 | 15, 17, 40 | 3imtr4d 294 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) |