Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lediv2aALT Structured version   Visualization version   GIF version

Theorem lediv2aALT 35649
Description: Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
lediv2aALT (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))

Proof of Theorem lediv2aALT
StepHypRef Expression
1 gt0ne0 11603 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
2 rereccl 11860 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
31, 2syldan 591 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
4 gt0ne0 11603 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5 rereccl 11860 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
64, 5syldan 591 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
73, 6anim12i 613 . . . . . 6 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ))
87ancoms 458 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ))
983adant3 1132 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ))
10 simp3 1138 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
11 df-3an 1088 . . . 4 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ↔ (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)))
129, 10, 11sylanbrc 583 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)))
13 lemul2a 11997 . . . 4 ((((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (1 / 𝐵) ≤ (1 / 𝐴)) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴)))
1413ex 412 . . 3 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
1512, 14syl 17 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((1 / 𝐵) ≤ (1 / 𝐴) → (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
16 lerec 12026 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
17163adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
18 recn 11118 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1918adantr 480 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → 𝐶 ∈ ℂ)
20 recn 11118 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
2221, 1jca 511 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
2319, 22anim12i 613 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)))
24 3anass 1094 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)))
2523, 24sylibr 234 . . . . . 6 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 divrec 11813 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
2725, 26syl 17 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
2827ancoms 458 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
29283adant1 1130 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
30 recn 11118 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
3231, 4jca 511 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3319, 32anim12i 613 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)))
34 3anass 1094 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ↔ (𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)))
3533, 34sylibr 234 . . . . . 6 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
36 divrec 11813 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
3735, 36syl 17 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
3837ancoms 458 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
39383adant2 1131 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
4029, 39breq12d 5108 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → ((𝐶 / 𝐵) ≤ (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) ≤ (𝐶 · (1 / 𝐴))))
4115, 17, 403imtr4d 294 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169   / cdiv 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator