| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letopuni | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letopuni | ⊢ ℝ* = ∪ (ordTop‘ ≤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letopon 23108 | . 2 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 2 | 1 | toponunii 22819 | 1 ⊢ ℝ* = ∪ (ordTop‘ ≤ ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cuni 4861 ‘cfv 6486 ℝ*cxr 11167 ≤ cle 11169 ordTopcordt 17421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-topgen 17365 df-ordt 17423 df-ps 18490 df-tsr 18491 df-top 22797 df-topon 22814 df-bases 22849 |
| This theorem is referenced by: lecldbas 23122 xrsmopn 24717 xrge0mulc1cn 33907 icccldii 48904 |
| Copyright terms: Public domain | W3C validator |