![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icccldii | Structured version Visualization version GIF version |
Description: Closed intervals are closed sets of II. Note that iccss 13388, iccordt 23028, and ordtresticc 23037 are proved from ixxss12 13340, ordtcld3 23013, and ordtrest2 23018, respectively. An alternate proof uses restcldi 22987, dfii2 24712, and icccld 24593. (Contributed by Zhi Wang, 8-Sep-2024.) |
Ref | Expression |
---|---|
icccldii | ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13403 | . . 3 ⊢ (0[,]1) ⊆ ℝ* | |
2 | iccordt 23028 | . . 3 ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) | |
3 | 0re 11212 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 1re 11210 | . . . 4 ⊢ 1 ∈ ℝ | |
5 | iccss 13388 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≤ 1)) → (𝐴[,]𝐵) ⊆ (0[,]1)) | |
6 | 3, 4, 5 | mpanl12 699 | . . 3 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ⊆ (0[,]1)) |
7 | letopuni 23021 | . . . 4 ⊢ ℝ* = ∪ (ordTop‘ ≤ ) | |
8 | 7 | restcldi 22987 | . . 3 ⊢ (((0[,]1) ⊆ ℝ* ∧ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) ∧ (𝐴[,]𝐵) ⊆ (0[,]1)) → (𝐴[,]𝐵) ∈ (Clsd‘((ordTop‘ ≤ ) ↾t (0[,]1)))) |
9 | 1, 2, 6, 8 | mp3an12i 1461 | . 2 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘((ordTop‘ ≤ ) ↾t (0[,]1)))) |
10 | dfii5 24715 | . . . 4 ⊢ II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1)))) | |
11 | ordtresticc 23037 | . . . 4 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]1)) = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1)))) | |
12 | 10, 11 | eqtr4i 2755 | . . 3 ⊢ II = ((ordTop‘ ≤ ) ↾t (0[,]1)) |
13 | 12 | fveq2i 6884 | . 2 ⊢ (Clsd‘II) = (Clsd‘((ordTop‘ ≤ ) ↾t (0[,]1))) |
14 | 9, 13 | eleqtrrdi 2836 | 1 ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∩ cin 3939 ⊆ wss 3940 class class class wbr 5138 × cxp 5664 ‘cfv 6533 (class class class)co 7401 ℝcr 11104 0cc0 11105 1c1 11106 ℝ*cxr 11243 ≤ cle 11245 [,]cicc 13323 ↾t crest 17362 ordTopcordt 17441 Clsdccld 22830 IIcii 24705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fi 9401 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-rest 17364 df-topgen 17385 df-ordt 17443 df-ps 18518 df-tsr 18519 df-psmet 21215 df-xmet 21216 df-met 21217 df-bl 21218 df-mopn 21219 df-top 22706 df-topon 22723 df-bases 22759 df-cld 22833 df-ii 24707 |
This theorem is referenced by: sepfsepc 47714 seppcld 47716 |
Copyright terms: Public domain | W3C validator |