Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidlacl | Structured version Visualization version GIF version |
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
lidlacl | ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlacl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
2 | rlmplusg 20511 | . . . 4 ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | |
3 | 1, 2 | eqtri 2764 | . . 3 ⊢ + = (+g‘(ringLMod‘𝑅)) |
4 | 3 | oveqi 7320 | . 2 ⊢ (𝑋 + 𝑌) = (𝑋(+g‘(ringLMod‘𝑅))𝑌) |
5 | rlmlmod 20520 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
6 | 5 | adantr 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (ringLMod‘𝑅) ∈ LMod) |
7 | simpr 486 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
8 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
9 | lidlval 20507 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2764 | . . . . 5 ⊢ 𝑈 = (LSubSp‘(ringLMod‘𝑅)) |
11 | 7, 10 | eleqtrdi 2847 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
12 | 6, 11 | jca 513 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
13 | eqid 2736 | . . . 4 ⊢ (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅)) | |
14 | eqid 2736 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
15 | 13, 14 | lssvacl 20261 | . . 3 ⊢ ((((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼) |
16 | 12, 15 | sylan 581 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼) |
17 | 4, 16 | eqeltrid 2841 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 +gcplusg 17007 Ringcrg 19828 LModclmod 20168 LSubSpclss 20238 ringLModcrglmod 20476 LIdealclidl 20477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-subg 18797 df-mgp 19766 df-ur 19783 df-ring 19830 df-subrg 20067 df-lmod 20170 df-lss 20239 df-sra 20479 df-rgmod 20480 df-lidl 20481 |
This theorem is referenced by: lidlsubg 20531 zringlpirlem3 20731 intlidl 31647 rhmpreimaidl 31648 idlinsubrg 31653 mxidlprm 31685 ssmxidllem 31686 hbtlem2 40987 hbtlem5 40991 |
Copyright terms: Public domain | W3C validator |