MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlacl Structured version   Visualization version   GIF version

Theorem lidlacl 21131
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
lidlacl.p + = (+g𝑅)
Assertion
Ref Expression
lidlacl (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)

Proof of Theorem lidlacl
StepHypRef Expression
1 lidlacl.p . . . 4 + = (+g𝑅)
2 rlmplusg 21101 . . . 4 (+g𝑅) = (+g‘(ringLMod‘𝑅))
31, 2eqtri 2752 . . 3 + = (+g‘(ringLMod‘𝑅))
43oveqi 7400 . 2 (𝑋 + 𝑌) = (𝑋(+g‘(ringLMod‘𝑅))𝑌)
5 rlmlmod 21110 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
65adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (ringLMod‘𝑅) ∈ LMod)
7 simpr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼𝑈)
8 lidlcl.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
9 lidlval 21120 . . . . . 6 (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))
108, 9eqtri 2752 . . . . 5 𝑈 = (LSubSp‘(ringLMod‘𝑅))
117, 10eleqtrdi 2838 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))
126, 11jca 511 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))))
13 eqid 2729 . . . 4 (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅))
14 eqid 2729 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
1513, 14lssvacl 20849 . . 3 ((((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼)
1612, 15sylan 580 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼)
174, 16eqeltrid 2832 1 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  +gcplusg 17220  Ringcrg 20142  LModclmod 20766  LSubSpclss 20837  ringLModcrglmod 21079  LIdealclidl 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-subg 19055  df-mgp 20050  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118
This theorem is referenced by:  lidlsubg  21133  rhmpreimaidl  21187  zringlpirlem3  21374  intlidl  33391  idlinsubrg  33402  ssdifidllem  33427  mxidlprm  33441  ssmxidllem  33444  qsdrnglem2  33467  hbtlem2  43113  hbtlem5  43117
  Copyright terms: Public domain W3C validator