Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcl | Structured version Visualization version GIF version |
Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
rspcl.k | ⊢ 𝐾 = (RSpan‘𝑅) |
rspcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rspcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
rspcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 20058 | . 2 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
2 | rspcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rlmbas 20048 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
4 | 2, 3 | eqtri 2781 | . . 3 ⊢ 𝐵 = (Base‘(ringLMod‘𝑅)) |
5 | rspcl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
6 | lidlval 20045 | . . . 4 ⊢ (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)) | |
7 | 5, 6 | eqtri 2781 | . . 3 ⊢ 𝑈 = (LSubSp‘(ringLMod‘𝑅)) |
8 | rspcl.k | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
9 | rspval 20046 | . . . 4 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2781 | . . 3 ⊢ 𝐾 = (LSpan‘(ringLMod‘𝑅)) |
11 | 4, 7, 10 | lspcl 19829 | . 2 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) |
12 | 1, 11 | sylan 583 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 ‘cfv 6340 Basecbs 16554 Ringcrg 19378 LModclmod 19715 LSubSpclss 19784 LSpanclspn 19824 ringLModcrglmod 20022 LIdealclidl 20023 RSpancrsp 20024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-ip 16654 df-0g 16786 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 df-minusg 18186 df-sbg 18187 df-subg 18356 df-mgp 19321 df-ur 19333 df-ring 19380 df-subrg 19614 df-lmod 19717 df-lss 19785 df-lsp 19825 df-sra 20025 df-rgmod 20026 df-lidl 20027 df-rsp 20028 |
This theorem is referenced by: rsp1 20078 lpiss 20104 znlidl 20314 zndvds 20330 isprmidlc 31156 idlsrgmulrcl 31188 zarclsiin 31354 zarclsint 31355 zarcmplem 31364 hbtlem6 40481 hbt 40482 |
Copyright terms: Public domain | W3C validator |