MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidl0cl Structured version   Visualization version   GIF version

Theorem lidl0cl 20811
Description: An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
lidl0cl.z 0 = (0g𝑅)
Assertion
Ref Expression
lidl0cl ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)

Proof of Theorem lidl0cl
StepHypRef Expression
1 lidl0cl.z . . 3 0 = (0g𝑅)
2 rlm0 20795 . . 3 (0g𝑅) = (0g‘(ringLMod‘𝑅))
31, 2eqtri 2761 . 2 0 = (0g‘(ringLMod‘𝑅))
4 rlmlmod 20803 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
5 simpr 486 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼𝑈)
6 lidlcl.u . . . . 5 𝑈 = (LIdeal‘𝑅)
7 lidlval 20790 . . . . 5 (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))
86, 7eqtri 2761 . . . 4 𝑈 = (LSubSp‘(ringLMod‘𝑅))
95, 8eleqtrdi 2844 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))
10 eqid 2733 . . . 4 (0g‘(ringLMod‘𝑅)) = (0g‘(ringLMod‘𝑅))
11 eqid 2733 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
1210, 11lss0cl 20534 . . 3 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) → (0g‘(ringLMod‘𝑅)) ∈ 𝐼)
134, 9, 12syl2an2r 684 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g‘(ringLMod‘𝑅)) ∈ 𝐼)
143, 13eqeltrid 2838 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6535  0gc0g 17372  Ringcrg 20038  LModclmod 20448  LSubSpclss 20519  ringLModcrglmod 20759  LIdealclidl 20760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-sca 17200  df-vsca 17201  df-ip 17202  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-sbg 18811  df-subg 18988  df-mgp 19971  df-ur 19988  df-ring 20040  df-subrg 20338  df-lmod 20450  df-lss 20520  df-sra 20762  df-rgmod 20763  df-lidl 20764
This theorem is referenced by:  lidlsubg  20814  lidlnz  20829  ig1peu  25658  ig1pdvds  25663  intlidl  32491  rhmpreimaidl  32492  0ringidl  32494  idlinsubrg  32500  rhmimaidl  32501  mxidlnzr  32534  mxidlprm  32537  ssmxidllem  32538  zarcls0  32779  hbtlem2  41737  hbtlem5  41741
  Copyright terms: Public domain W3C validator