Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidlnegcl | Structured version Visualization version GIF version |
Description: An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlnegcl.n | ⊢ 𝑁 = (invg‘𝑅) |
Ref | Expression |
---|---|
lidlnegcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlnegcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
2 | rlmvneg 20561 | . . . 4 ⊢ (invg‘𝑅) = (invg‘(ringLMod‘𝑅)) | |
3 | 1, 2 | eqtri 2765 | . . 3 ⊢ 𝑁 = (invg‘(ringLMod‘𝑅)) |
4 | 3 | fveq1i 6813 | . 2 ⊢ (𝑁‘𝑋) = ((invg‘(ringLMod‘𝑅))‘𝑋) |
5 | rlmlmod 20558 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
6 | 5 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (ringLMod‘𝑅) ∈ LMod) |
7 | simpr 485 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
8 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
9 | lidlval 20545 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2765 | . . . . 5 ⊢ 𝑈 = (LSubSp‘(ringLMod‘𝑅)) |
11 | 7, 10 | eleqtrdi 2848 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
12 | 11 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
13 | simp3 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → 𝑋 ∈ 𝐼) | |
14 | eqid 2737 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
15 | eqid 2737 | . . . 4 ⊢ (invg‘(ringLMod‘𝑅)) = (invg‘(ringLMod‘𝑅)) | |
16 | 14, 15 | lssvnegcl 20301 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ∧ 𝑋 ∈ 𝐼) → ((invg‘(ringLMod‘𝑅))‘𝑋) ∈ 𝐼) |
17 | 6, 12, 13, 16 | syl3anc 1370 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → ((invg‘(ringLMod‘𝑅))‘𝑋) ∈ 𝐼) |
18 | 4, 17 | eqeltrid 2842 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6466 invgcminusg 18654 Ringcrg 19858 LModclmod 20206 LSubSpclss 20276 ringLModcrglmod 20514 LIdealclidl 20515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-sca 17055 df-vsca 17056 df-ip 17057 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-grp 18656 df-minusg 18657 df-sbg 18658 df-subg 18828 df-mgp 19796 df-ur 19813 df-ring 19860 df-subrg 20104 df-lmod 20208 df-lss 20277 df-sra 20517 df-rgmod 20518 df-lidl 20519 |
This theorem is referenced by: lidlsubg 20569 zringlpirlem1 20767 |
Copyright terms: Public domain | W3C validator |