| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 11472 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ℂcc 11066 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: negn0 11607 ltnegcon1 11679 ltnegcon2 11680 lenegcon1 11682 lenegcon2 11683 negfi 12132 infm3lem 12141 infrenegsup 12166 zeo 12620 zindd 12635 znnn0nn 12645 supminf 12894 zsupss 12896 max0sub 13156 xnegneg 13174 ceilid 13813 expneg 14034 expaddzlem 14070 expaddz 14071 cjcj 15106 cnpart 15206 risefallfac 15990 sincossq 16144 difmod0 16257 bitsf1 16416 pcid 16844 4sqlem10 16918 mulgnegnn 19016 mulgsubcl 19020 mulgneg 19024 mulgz 19034 mulgass 19043 ghmmulg 19160 cyggeninv 19813 tgpmulg 23980 xrhmeo 24844 cphsqrtcl3 25087 iblneg 25704 itgneg 25705 ditgswap 25760 lhop2 25920 vieta1lem2 26219 ptolemy 26405 tanabsge 26415 tanord 26447 tanregt0 26448 lognegb 26499 logtayl 26569 logtayl2 26571 cxpmul2z 26600 isosctrlem2 26729 dcubic 26756 dquart 26763 atans2 26841 amgmlem 26900 lgamucov 26948 basellem5 26995 basellem9 26999 lgsdir2lem4 27239 dchrisum0flblem1 27419 ostth3 27549 ipasslem3 30762 zconstr 33754 constrsqrtcl 33769 zrhcntr 33969 ftc1anclem6 37692 lcmineqlem12 42028 posbezout 42088 dffltz 42622 rexzrexnn0 42792 acongsym 42965 acongneg2 42966 acongtr 42967 binomcxplemnotnn0 44345 infnsuprnmpt 45244 ltmulneg 45388 rexabslelem 45414 supminfrnmpt 45441 leneg2d 45444 leneg3d 45453 supminfxr 45460 climliminflimsupd 45799 itgsin0pilem1 45948 itgsinexplem1 45952 itgsincmulx 45972 stoweidlem13 46011 fourierdlem39 46144 fourierdlem43 46148 fourierdlem44 46149 etransclem46 46278 hoicvr 46546 smfinflem 46815 sigariz 46861 sigaradd 46864 sqrtnegnre 47308 ceildivmod 47340 requad01 47622 itsclc0yqsol 48753 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |