Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 11128 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ℂcc 10727 -cneg 11063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-neg 11065 |
This theorem is referenced by: negn0 11261 ltnegcon1 11333 ltnegcon2 11334 lenegcon1 11336 lenegcon2 11337 negfi 11781 infm3lem 11790 infrenegsup 11815 zeo 12263 zindd 12278 znnn0nn 12289 supminf 12531 zsupss 12533 max0sub 12786 xnegneg 12804 ceilid 13424 expneg 13643 expaddzlem 13678 expaddz 13679 cjcj 14703 cnpart 14803 risefallfac 15586 sincossq 15737 bitsf1 16005 pcid 16426 4sqlem10 16500 mulgnegnn 18502 mulgsubcl 18506 mulgneg 18510 mulgz 18519 mulgass 18528 ghmmulg 18634 cyggeninv 19267 tgpmulg 22990 xrhmeo 23843 cphsqrtcl3 24084 iblneg 24700 itgneg 24701 ditgswap 24756 lhop2 24912 vieta1lem2 25204 ptolemy 25386 tanabsge 25396 tanord 25427 tanregt0 25428 lognegb 25478 logtayl 25548 logtayl2 25550 cxpmul2z 25579 isosctrlem2 25702 dcubic 25729 dquart 25736 atans2 25814 amgmlem 25872 lgamucov 25920 basellem5 25967 basellem9 25971 lgsdir2lem4 26209 dchrisum0flblem1 26389 ostth3 26519 ipasslem3 28914 ftc1anclem6 35592 lcmineqlem12 39782 dffltz 40174 rexzrexnn0 40329 acongsym 40501 acongneg2 40502 acongtr 40503 binomcxplemnotnn0 41647 infnsuprnmpt 42468 ltmulneg 42605 rexabslelem 42631 supminfrnmpt 42658 leneg2d 42662 leneg3d 42672 supminfxr 42679 climliminflimsupd 43017 itgsin0pilem1 43166 itgsinexplem1 43170 itgsincmulx 43190 stoweidlem13 43229 fourierdlem39 43362 fourierdlem43 43366 fourierdlem44 43367 etransclem46 43496 hoicvr 43761 smfinflem 44022 sigariz 44051 sigaradd 44054 sqrtnegnre 44472 requad01 44746 itsclc0yqsol 45783 amgmwlem 46177 |
Copyright terms: Public domain | W3C validator |