Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 11376 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ℂcc 10974 -cneg 11311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-ltxr 11119 df-sub 11312 df-neg 11313 |
This theorem is referenced by: negn0 11509 ltnegcon1 11581 ltnegcon2 11582 lenegcon1 11584 lenegcon2 11585 negfi 12029 infm3lem 12038 infrenegsup 12063 zeo 12511 zindd 12526 znnn0nn 12538 supminf 12780 zsupss 12782 max0sub 13035 xnegneg 13053 ceilid 13676 expneg 13895 expaddzlem 13931 expaddz 13932 cjcj 14950 cnpart 15050 risefallfac 15833 sincossq 15984 bitsf1 16252 pcid 16671 4sqlem10 16745 mulgnegnn 18810 mulgsubcl 18814 mulgneg 18818 mulgz 18827 mulgass 18836 ghmmulg 18942 cyggeninv 19578 tgpmulg 23349 xrhmeo 24214 cphsqrtcl3 24456 iblneg 25072 itgneg 25073 ditgswap 25128 lhop2 25284 vieta1lem2 25576 ptolemy 25758 tanabsge 25768 tanord 25799 tanregt0 25800 lognegb 25850 logtayl 25920 logtayl2 25922 cxpmul2z 25951 isosctrlem2 26074 dcubic 26101 dquart 26108 atans2 26186 amgmlem 26244 lgamucov 26292 basellem5 26339 basellem9 26343 lgsdir2lem4 26581 dchrisum0flblem1 26761 ostth3 26891 ipasslem3 29482 ftc1anclem6 36011 lcmineqlem12 40353 dffltz 40784 rexzrexnn0 40939 acongsym 41112 acongneg2 41113 acongtr 41114 binomcxplemnotnn0 42347 infnsuprnmpt 43176 ltmulneg 43319 rexabslelem 43345 supminfrnmpt 43372 leneg2d 43375 leneg3d 43384 supminfxr 43391 climliminflimsupd 43730 itgsin0pilem1 43879 itgsinexplem1 43883 itgsincmulx 43903 stoweidlem13 43942 fourierdlem39 44075 fourierdlem43 44079 fourierdlem44 44080 etransclem46 44209 hoicvr 44475 smfinflem 44744 sigariz 44782 sigaradd 44785 sqrtnegnre 45217 requad01 45491 itsclc0yqsol 46528 amgmwlem 46924 |
Copyright terms: Public domain | W3C validator |