Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 11201 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ℂcc 10800 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: negn0 11334 ltnegcon1 11406 ltnegcon2 11407 lenegcon1 11409 lenegcon2 11410 negfi 11854 infm3lem 11863 infrenegsup 11888 zeo 12336 zindd 12351 znnn0nn 12362 supminf 12604 zsupss 12606 max0sub 12859 xnegneg 12877 ceilid 13499 expneg 13718 expaddzlem 13754 expaddz 13755 cjcj 14779 cnpart 14879 risefallfac 15662 sincossq 15813 bitsf1 16081 pcid 16502 4sqlem10 16576 mulgnegnn 18629 mulgsubcl 18633 mulgneg 18637 mulgz 18646 mulgass 18655 ghmmulg 18761 cyggeninv 19398 tgpmulg 23152 xrhmeo 24015 cphsqrtcl3 24256 iblneg 24872 itgneg 24873 ditgswap 24928 lhop2 25084 vieta1lem2 25376 ptolemy 25558 tanabsge 25568 tanord 25599 tanregt0 25600 lognegb 25650 logtayl 25720 logtayl2 25722 cxpmul2z 25751 isosctrlem2 25874 dcubic 25901 dquart 25908 atans2 25986 amgmlem 26044 lgamucov 26092 basellem5 26139 basellem9 26143 lgsdir2lem4 26381 dchrisum0flblem1 26561 ostth3 26691 ipasslem3 29096 ftc1anclem6 35782 lcmineqlem12 39976 dffltz 40387 rexzrexnn0 40542 acongsym 40714 acongneg2 40715 acongtr 40716 binomcxplemnotnn0 41863 infnsuprnmpt 42685 ltmulneg 42822 rexabslelem 42848 supminfrnmpt 42875 leneg2d 42878 leneg3d 42887 supminfxr 42894 climliminflimsupd 43232 itgsin0pilem1 43381 itgsinexplem1 43385 itgsincmulx 43405 stoweidlem13 43444 fourierdlem39 43577 fourierdlem43 43581 fourierdlem44 43582 etransclem46 43711 hoicvr 43976 smfinflem 44237 sigariz 44266 sigaradd 44269 sqrtnegnre 44687 requad01 44961 itsclc0yqsol 45998 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |