![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 11556 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ℂcc 11150 -cneg 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 df-neg 11492 |
This theorem is referenced by: negn0 11689 ltnegcon1 11761 ltnegcon2 11762 lenegcon1 11764 lenegcon2 11765 negfi 12214 infm3lem 12223 infrenegsup 12248 zeo 12701 zindd 12716 znnn0nn 12726 supminf 12974 zsupss 12976 max0sub 13234 xnegneg 13252 ceilid 13887 expneg 14106 expaddzlem 14142 expaddz 14143 cjcj 15175 cnpart 15275 risefallfac 16056 sincossq 16208 bitsf1 16479 pcid 16906 4sqlem10 16980 mulgnegnn 19114 mulgsubcl 19118 mulgneg 19122 mulgz 19132 mulgass 19141 ghmmulg 19258 cyggeninv 19915 tgpmulg 24116 xrhmeo 24990 cphsqrtcl3 25234 iblneg 25852 itgneg 25853 ditgswap 25908 lhop2 26068 vieta1lem2 26367 ptolemy 26552 tanabsge 26562 tanord 26594 tanregt0 26595 lognegb 26646 logtayl 26716 logtayl2 26718 cxpmul2z 26747 isosctrlem2 26876 dcubic 26903 dquart 26910 atans2 26988 amgmlem 27047 lgamucov 27095 basellem5 27142 basellem9 27146 lgsdir2lem4 27386 dchrisum0flblem1 27566 ostth3 27696 ipasslem3 30861 zrhcntr 33941 ftc1anclem6 37684 lcmineqlem12 42021 posbezout 42081 dffltz 42620 rexzrexnn0 42791 acongsym 42964 acongneg2 42965 acongtr 42966 binomcxplemnotnn0 44351 infnsuprnmpt 45194 ltmulneg 45341 rexabslelem 45367 supminfrnmpt 45394 leneg2d 45397 leneg3d 45406 supminfxr 45413 climliminflimsupd 45756 itgsin0pilem1 45905 itgsinexplem1 45909 itgsincmulx 45929 stoweidlem13 45968 fourierdlem39 46101 fourierdlem43 46105 fourierdlem44 46106 etransclem46 46235 hoicvr 46503 smfinflem 46772 sigariz 46818 sigaradd 46821 sqrtnegnre 47256 ceildivmod 47278 requad01 47545 itsclc0yqsol 48613 amgmwlem 49032 |
Copyright terms: Public domain | W3C validator |