| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 11448 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ℂcc 11042 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: negn0 11583 ltnegcon1 11655 ltnegcon2 11656 lenegcon1 11658 lenegcon2 11659 negfi 12108 infm3lem 12117 infrenegsup 12142 zeo 12596 zindd 12611 znnn0nn 12621 supminf 12870 zsupss 12872 max0sub 13132 xnegneg 13150 ceilid 13789 expneg 14010 expaddzlem 14046 expaddz 14047 cjcj 15082 cnpart 15182 risefallfac 15966 sincossq 16120 difmod0 16233 bitsf1 16392 pcid 16820 4sqlem10 16894 mulgnegnn 18998 mulgsubcl 19002 mulgneg 19006 mulgz 19016 mulgass 19025 ghmmulg 19142 cyggeninv 19797 tgpmulg 24013 xrhmeo 24877 cphsqrtcl3 25120 iblneg 25737 itgneg 25738 ditgswap 25793 lhop2 25953 vieta1lem2 26252 ptolemy 26438 tanabsge 26448 tanord 26480 tanregt0 26481 lognegb 26532 logtayl 26602 logtayl2 26604 cxpmul2z 26633 isosctrlem2 26762 dcubic 26789 dquart 26796 atans2 26874 amgmlem 26933 lgamucov 26981 basellem5 27028 basellem9 27032 lgsdir2lem4 27272 dchrisum0flblem1 27452 ostth3 27582 ipasslem3 30812 zconstr 33747 constrsqrtcl 33762 zrhcntr 33962 ftc1anclem6 37685 lcmineqlem12 42021 posbezout 42081 dffltz 42615 rexzrexnn0 42785 acongsym 42958 acongneg2 42959 acongtr 42960 binomcxplemnotnn0 44338 infnsuprnmpt 45237 ltmulneg 45381 rexabslelem 45407 supminfrnmpt 45434 leneg2d 45437 leneg3d 45446 supminfxr 45453 climliminflimsupd 45792 itgsin0pilem1 45941 itgsinexplem1 45945 itgsincmulx 45965 stoweidlem13 46004 fourierdlem39 46137 fourierdlem43 46141 fourierdlem44 46142 etransclem46 46271 hoicvr 46539 smfinflem 46808 sigariz 46854 sigaradd 46857 sqrtnegnre 47301 ceildivmod 47333 requad01 47615 itsclc0yqsol 48746 amgmwlem 49784 |
| Copyright terms: Public domain | W3C validator |