| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 11414 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ℂcc 11007 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: negn0 11549 ltnegcon1 11621 ltnegcon2 11622 lenegcon1 11624 lenegcon2 11625 negfi 12074 infm3lem 12083 infrenegsup 12108 zeo 12562 zindd 12577 znnn0nn 12587 supminf 12836 zsupss 12838 max0sub 13098 xnegneg 13116 ceilid 13755 expneg 13976 expaddzlem 14012 expaddz 14013 cjcj 15047 cnpart 15147 risefallfac 15931 sincossq 16085 difmod0 16198 bitsf1 16357 pcid 16785 4sqlem10 16859 mulgnegnn 18963 mulgsubcl 18967 mulgneg 18971 mulgz 18981 mulgass 18990 ghmmulg 19107 cyggeninv 19762 tgpmulg 23978 xrhmeo 24842 cphsqrtcl3 25085 iblneg 25702 itgneg 25703 ditgswap 25758 lhop2 25918 vieta1lem2 26217 ptolemy 26403 tanabsge 26413 tanord 26445 tanregt0 26446 lognegb 26497 logtayl 26567 logtayl2 26569 cxpmul2z 26598 isosctrlem2 26727 dcubic 26754 dquart 26761 atans2 26839 amgmlem 26898 lgamucov 26946 basellem5 26993 basellem9 26997 lgsdir2lem4 27237 dchrisum0flblem1 27417 ostth3 27547 ipasslem3 30777 zconstr 33737 constrsqrtcl 33752 zrhcntr 33952 ftc1anclem6 37688 lcmineqlem12 42023 posbezout 42083 dffltz 42617 rexzrexnn0 42787 acongsym 42959 acongneg2 42960 acongtr 42961 binomcxplemnotnn0 44339 infnsuprnmpt 45238 ltmulneg 45381 rexabslelem 45407 supminfrnmpt 45434 leneg2d 45437 leneg3d 45446 supminfxr 45453 climliminflimsupd 45792 itgsin0pilem1 45941 itgsinexplem1 45945 itgsincmulx 45965 stoweidlem13 46004 fourierdlem39 46137 fourierdlem43 46141 fourierdlem44 46142 etransclem46 46271 hoicvr 46539 smfinflem 46808 sigariz 46854 sigaradd 46857 sqrtnegnre 47301 ceildivmod 47333 requad01 47615 itsclc0yqsol 48759 amgmwlem 49797 |
| Copyright terms: Public domain | W3C validator |