| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 11538 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ℂcc 11132 -cneg 11472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 |
| This theorem is referenced by: negn0 11671 ltnegcon1 11743 ltnegcon2 11744 lenegcon1 11746 lenegcon2 11747 negfi 12196 infm3lem 12205 infrenegsup 12230 zeo 12684 zindd 12699 znnn0nn 12709 supminf 12956 zsupss 12958 max0sub 13217 xnegneg 13235 ceilid 13873 expneg 14092 expaddzlem 14128 expaddz 14129 cjcj 15164 cnpart 15264 risefallfac 16045 sincossq 16199 bitsf1 16470 pcid 16898 4sqlem10 16972 mulgnegnn 19072 mulgsubcl 19076 mulgneg 19080 mulgz 19090 mulgass 19099 ghmmulg 19216 cyggeninv 19869 tgpmulg 24036 xrhmeo 24900 cphsqrtcl3 25144 iblneg 25761 itgneg 25762 ditgswap 25817 lhop2 25977 vieta1lem2 26276 ptolemy 26462 tanabsge 26472 tanord 26504 tanregt0 26505 lognegb 26556 logtayl 26626 logtayl2 26628 cxpmul2z 26657 isosctrlem2 26786 dcubic 26813 dquart 26820 atans2 26898 amgmlem 26957 lgamucov 27005 basellem5 27052 basellem9 27056 lgsdir2lem4 27296 dchrisum0flblem1 27476 ostth3 27606 ipasslem3 30819 zconstr 33803 constrsqrtcl 33818 zrhcntr 34015 ftc1anclem6 37727 lcmineqlem12 42058 posbezout 42118 dffltz 42624 rexzrexnn0 42794 acongsym 42967 acongneg2 42968 acongtr 42969 binomcxplemnotnn0 44347 infnsuprnmpt 45241 ltmulneg 45386 rexabslelem 45412 supminfrnmpt 45439 leneg2d 45442 leneg3d 45451 supminfxr 45458 climliminflimsupd 45797 itgsin0pilem1 45946 itgsinexplem1 45950 itgsincmulx 45970 stoweidlem13 46009 fourierdlem39 46142 fourierdlem43 46146 fourierdlem44 46147 etransclem46 46276 hoicvr 46544 smfinflem 46813 sigariz 46859 sigaradd 46862 sqrtnegnre 47303 ceildivmod 47335 requad01 47602 itsclc0yqsol 48711 amgmwlem 49633 |
| Copyright terms: Public domain | W3C validator |