| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negneg 11411 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ℂcc 11004 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: negn0 11546 ltnegcon1 11618 ltnegcon2 11619 lenegcon1 11621 lenegcon2 11622 negfi 12071 infm3lem 12080 infrenegsup 12105 zeo 12559 zindd 12574 znnn0nn 12584 supminf 12833 zsupss 12835 max0sub 13095 xnegneg 13113 ceilid 13755 expneg 13976 expaddzlem 14012 expaddz 14013 cjcj 15047 cnpart 15147 risefallfac 15931 sincossq 16085 difmod0 16198 bitsf1 16357 pcid 16785 4sqlem10 16859 mulgnegnn 18997 mulgsubcl 19001 mulgneg 19005 mulgz 19015 mulgass 19024 ghmmulg 19140 cyggeninv 19795 tgpmulg 24008 xrhmeo 24871 cphsqrtcl3 25114 iblneg 25731 itgneg 25732 ditgswap 25787 lhop2 25947 vieta1lem2 26246 ptolemy 26432 tanabsge 26442 tanord 26474 tanregt0 26475 lognegb 26526 logtayl 26596 logtayl2 26598 cxpmul2z 26627 isosctrlem2 26756 dcubic 26783 dquart 26790 atans2 26868 amgmlem 26927 lgamucov 26975 basellem5 27022 basellem9 27026 lgsdir2lem4 27266 dchrisum0flblem1 27446 ostth3 27576 ipasslem3 30813 zconstr 33777 constrsqrtcl 33792 zrhcntr 33992 ftc1anclem6 37748 lcmineqlem12 42143 posbezout 42203 dffltz 42737 rexzrexnn0 42907 acongsym 43079 acongneg2 43080 acongtr 43081 binomcxplemnotnn0 44459 infnsuprnmpt 45357 ltmulneg 45500 rexabslelem 45526 supminfrnmpt 45553 leneg2d 45556 leneg3d 45565 supminfxr 45572 climliminflimsupd 45909 itgsin0pilem1 46058 itgsinexplem1 46062 itgsincmulx 46082 stoweidlem13 46121 fourierdlem39 46254 fourierdlem43 46258 fourierdlem44 46259 etransclem46 46388 hoicvr 46656 smfinflem 46925 sigariz 46971 sigaradd 46974 sqrtnegnre 47417 ceildivmod 47449 requad01 47731 itsclc0yqsol 48875 amgmwlem 49913 |
| Copyright terms: Public domain | W3C validator |