![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negnegd | Structured version Visualization version GIF version |
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negnegd | ⊢ (𝜑 → --𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negneg 11586 | . 2 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → --𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ℂcc 11182 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: negn0 11719 ltnegcon1 11791 ltnegcon2 11792 lenegcon1 11794 lenegcon2 11795 negfi 12244 infm3lem 12253 infrenegsup 12278 zeo 12729 zindd 12744 znnn0nn 12754 supminf 13000 zsupss 13002 max0sub 13258 xnegneg 13276 ceilid 13902 expneg 14120 expaddzlem 14156 expaddz 14157 cjcj 15189 cnpart 15289 risefallfac 16072 sincossq 16224 bitsf1 16492 pcid 16920 4sqlem10 16994 mulgnegnn 19124 mulgsubcl 19128 mulgneg 19132 mulgz 19142 mulgass 19151 ghmmulg 19268 cyggeninv 19925 tgpmulg 24122 xrhmeo 24996 cphsqrtcl3 25240 iblneg 25858 itgneg 25859 ditgswap 25914 lhop2 26074 vieta1lem2 26371 ptolemy 26556 tanabsge 26566 tanord 26598 tanregt0 26599 lognegb 26650 logtayl 26720 logtayl2 26722 cxpmul2z 26751 isosctrlem2 26880 dcubic 26907 dquart 26914 atans2 26992 amgmlem 27051 lgamucov 27099 basellem5 27146 basellem9 27150 lgsdir2lem4 27390 dchrisum0flblem1 27570 ostth3 27700 ipasslem3 30865 ftc1anclem6 37658 lcmineqlem12 41997 posbezout 42057 dffltz 42589 rexzrexnn0 42760 acongsym 42933 acongneg2 42934 acongtr 42935 binomcxplemnotnn0 44325 infnsuprnmpt 45159 ltmulneg 45307 rexabslelem 45333 supminfrnmpt 45360 leneg2d 45363 leneg3d 45372 supminfxr 45379 climliminflimsupd 45722 itgsin0pilem1 45871 itgsinexplem1 45875 itgsincmulx 45895 stoweidlem13 45934 fourierdlem39 46067 fourierdlem43 46071 fourierdlem44 46072 etransclem46 46201 hoicvr 46469 smfinflem 46738 sigariz 46784 sigaradd 46787 sqrtnegnre 47222 requad01 47495 itsclc0yqsol 48498 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |