MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodgt0 Structured version   Visualization version   GIF version

Theorem prodgt0 11752
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)

Proof of Theorem prodgt0
StepHypRef Expression
1 0red 10909 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
31, 2leloed 11048 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐴 ∈ ℝ)
5 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐵 ∈ ℝ)
64, 5remulcld 10936 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℝ)
7 simprl 767 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴)
87gt0ne0d 11469 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐴 ≠ 0)
94, 8rereccld 11732 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (1 / 𝐴) ∈ ℝ)
10 simprr 769 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < (𝐴 · 𝐵))
11 recgt0 11751 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
1211ad2ant2r 743 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < (1 / 𝐴))
136, 9, 10, 12mulgt0d 11060 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < ((𝐴 · 𝐵) · (1 / 𝐴)))
146recnd 10934 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℂ)
154recnd 10934 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐴 ∈ ℂ)
1614, 15, 8divrecd 11684 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → ((𝐴 · 𝐵) / 𝐴) = ((𝐴 · 𝐵) · (1 / 𝐴)))
17 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
1817recnd 10934 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
1918adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐵 ∈ ℂ)
2019, 15, 8divcan3d 11686 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → ((𝐴 · 𝐵) / 𝐴) = 𝐵)
2116, 20eqtr3d 2780 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → ((𝐴 · 𝐵) · (1 / 𝐴)) = 𝐵)
2213, 21breqtrd 5096 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
2322exp32 420 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 → (0 < (𝐴 · 𝐵) → 0 < 𝐵)))
24 0re 10908 . . . . . . . 8 0 ∈ ℝ
2524ltnri 11014 . . . . . . 7 ¬ 0 < 0
2618mul02d 11103 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
2726breq2d 5082 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (0 · 𝐵) ↔ 0 < 0))
2825, 27mtbiri 326 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 0 < (0 · 𝐵))
2928pm2.21d 121 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (0 · 𝐵) → 0 < 𝐵))
30 oveq1 7262 . . . . . . 7 (0 = 𝐴 → (0 · 𝐵) = (𝐴 · 𝐵))
3130breq2d 5082 . . . . . 6 (0 = 𝐴 → (0 < (0 · 𝐵) ↔ 0 < (𝐴 · 𝐵)))
3231imbi1d 341 . . . . 5 (0 = 𝐴 → ((0 < (0 · 𝐵) → 0 < 𝐵) ↔ (0 < (𝐴 · 𝐵) → 0 < 𝐵)))
3329, 32syl5ibcom 244 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐴 → (0 < (𝐴 · 𝐵) → 0 < 𝐵)))
3423, 33jaod 855 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∨ 0 = 𝐴) → (0 < (𝐴 · 𝐵) → 0 < 𝐵)))
353, 34sylbid 239 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐴 → (0 < (𝐴 · 𝐵) → 0 < 𝐵)))
3635imp32 418 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  prodgt02  11753  prodgt0i  11812  evennn2n  15988  sgnmul  32409
  Copyright terms: Public domain W3C validator