| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signlem0 | Structured version Visualization version GIF version | ||
| Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signlem0 | ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 6 | 2, 3, 4, 5 | signsvfn 34580 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
| 8 | 1 | ltnri 11290 | . . . . 5 ⊢ ¬ 0 < 0 |
| 9 | neg1cn 12178 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 10 | ax-1cn 11133 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 11 | prssi 4788 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . . 8 ⊢ {-1, 1} ⊆ ℂ |
| 13 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
| 14 | eldifsn 4753 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
| 15 | 13, 14 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
| 16 | lennncl 14506 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ) | |
| 17 | fzo0end 13726 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
| 18 | 15, 16, 17 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
| 19 | 2, 3, 4, 5 | signstfvcl 34571 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
| 20 | 18, 19 | mpdan 687 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
| 21 | 12, 20 | sselid 3947 | . . . . . . 7 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℂ) |
| 22 | 21 | mul01d 11380 | . . . . . 6 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) = 0) |
| 23 | 22 | breq1d 5120 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0)) |
| 24 | 8, 23 | mtbiri 327 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0) |
| 25 | 24 | iffalsed 4502 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0) = 0) |
| 26 | 25 | oveq2d 7406 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉‘𝐹) + 0)) |
| 27 | 2, 3, 4, 5 | signsvvf 34577 | . . . . . 6 ⊢ 𝑉:Word ℝ⟶ℕ0 |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0) |
| 29 | 13 | eldifad 3929 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ) |
| 30 | 28, 29 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℕ0) |
| 31 | 30 | nn0cnd 12512 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℂ) |
| 32 | 31 | addridd 11381 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + 0) = (𝑉‘𝐹)) |
| 33 | 7, 26, 32 | 3eqtrd 2769 | 1 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 ifcif 4491 {csn 4592 {cpr 4594 {ctp 4596 〈cop 4598 class class class wbr 5110 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 -cneg 11413 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Word cword 14485 ++ cconcat 14542 〈“cs1 14567 sgncsgn 15059 Σcsu 15659 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 Σg cgsu 17410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-sgn 15060 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mulg 19007 df-cntz 19256 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |