![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signlem0 | Structured version Visualization version GIF version |
Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signlem0 | ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11248 | . . 3 ⊢ 0 ∈ ℝ | |
2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
6 | 2, 3, 4, 5 | signsvfn 34345 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
7 | 1, 6 | mpan2 689 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
8 | 1 | ltnri 11355 | . . . . 5 ⊢ ¬ 0 < 0 |
9 | neg1cn 12359 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
10 | ax-1cn 11198 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
11 | prssi 4826 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ) | |
12 | 9, 10, 11 | mp2an 690 | . . . . . . . 8 ⊢ {-1, 1} ⊆ ℂ |
13 | simpl 481 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
14 | eldifsn 4792 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
15 | 13, 14 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
16 | lennncl 14520 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ) | |
17 | fzo0end 13759 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
19 | 2, 3, 4, 5 | signstfvcl 34336 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
20 | 18, 19 | mpdan 685 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
21 | 12, 20 | sselid 3974 | . . . . . . 7 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℂ) |
22 | 21 | mul01d 11445 | . . . . . 6 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) = 0) |
23 | 22 | breq1d 5159 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0)) |
24 | 8, 23 | mtbiri 326 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0) |
25 | 24 | iffalsed 4541 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0) = 0) |
26 | 25 | oveq2d 7435 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉‘𝐹) + 0)) |
27 | 2, 3, 4, 5 | signsvvf 34342 | . . . . . 6 ⊢ 𝑉:Word ℝ⟶ℕ0 |
28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0) |
29 | 13 | eldifad 3956 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ) |
30 | 28, 29 | ffvelcdmd 7094 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℕ0) |
31 | 30 | nn0cnd 12567 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℂ) |
32 | 31 | addridd 11446 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + 0) = (𝑉‘𝐹)) |
33 | 7, 26, 32 | 3eqtrd 2769 | 1 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4322 ifcif 4530 {csn 4630 {cpr 4632 {ctp 4634 〈cop 4636 class class class wbr 5149 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 ℂcc 11138 ℝcr 11139 0cc0 11140 1c1 11141 + caddc 11143 · cmul 11145 < clt 11280 − cmin 11476 -cneg 11477 ℕcn 12245 ℕ0cn0 12505 ...cfz 13519 ..^cfzo 13662 ♯chash 14325 Word cword 14500 ++ cconcat 14556 〈“cs1 14581 sgncsgn 15069 Σcsu 15668 ndxcnx 17165 Basecbs 17183 +gcplusg 17236 Σg cgsu 17425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-word 14501 df-lsw 14549 df-concat 14557 df-s1 14582 df-substr 14627 df-pfx 14657 df-sgn 15070 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-0g 17426 df-gsum 17427 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mulg 19032 df-cntz 19280 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |