![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signlem0 | Structured version Visualization version GIF version |
Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signlem0 | β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (πβ(πΉ ++ β¨β0ββ©)) = (πβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11221 | . . 3 β’ 0 β β | |
2 | signsv.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
3 | signsv.w | . . . 4 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
4 | signsv.t | . . . 4 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
5 | signsv.v | . . . 4 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
6 | 2, 3, 4, 5 | signsvfn 33892 | . . 3 β’ (((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β§ 0 β β) β (πβ(πΉ ++ β¨β0ββ©)) = ((πβπΉ) + if((((πβπΉ)β((β―βπΉ) β 1)) Β· 0) < 0, 1, 0))) |
7 | 1, 6 | mpan2 688 | . 2 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (πβ(πΉ ++ β¨β0ββ©)) = ((πβπΉ) + if((((πβπΉ)β((β―βπΉ) β 1)) Β· 0) < 0, 1, 0))) |
8 | 1 | ltnri 11328 | . . . . 5 β’ Β¬ 0 < 0 |
9 | neg1cn 12331 | . . . . . . . . 9 β’ -1 β β | |
10 | ax-1cn 11172 | . . . . . . . . 9 β’ 1 β β | |
11 | prssi 4824 | . . . . . . . . 9 β’ ((-1 β β β§ 1 β β) β {-1, 1} β β) | |
12 | 9, 10, 11 | mp2an 689 | . . . . . . . 8 β’ {-1, 1} β β |
13 | simpl 482 | . . . . . . . . . . 11 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β πΉ β (Word β β {β })) | |
14 | eldifsn 4790 | . . . . . . . . . . 11 β’ (πΉ β (Word β β {β }) β (πΉ β Word β β§ πΉ β β )) | |
15 | 13, 14 | sylib 217 | . . . . . . . . . 10 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (πΉ β Word β β§ πΉ β β )) |
16 | lennncl 14489 | . . . . . . . . . 10 β’ ((πΉ β Word β β§ πΉ β β ) β (β―βπΉ) β β) | |
17 | fzo0end 13729 | . . . . . . . . . 10 β’ ((β―βπΉ) β β β ((β―βπΉ) β 1) β (0..^(β―βπΉ))) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . . . 9 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β ((β―βπΉ) β 1) β (0..^(β―βπΉ))) |
19 | 2, 3, 4, 5 | signstfvcl 33883 | . . . . . . . . 9 β’ (((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β§ ((β―βπΉ) β 1) β (0..^(β―βπΉ))) β ((πβπΉ)β((β―βπΉ) β 1)) β {-1, 1}) |
20 | 18, 19 | mpdan 684 | . . . . . . . 8 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β ((πβπΉ)β((β―βπΉ) β 1)) β {-1, 1}) |
21 | 12, 20 | sselid 3980 | . . . . . . 7 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β ((πβπΉ)β((β―βπΉ) β 1)) β β) |
22 | 21 | mul01d 11418 | . . . . . 6 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (((πβπΉ)β((β―βπΉ) β 1)) Β· 0) = 0) |
23 | 22 | breq1d 5158 | . . . . 5 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β ((((πβπΉ)β((β―βπΉ) β 1)) Β· 0) < 0 β 0 < 0)) |
24 | 8, 23 | mtbiri 327 | . . . 4 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β Β¬ (((πβπΉ)β((β―βπΉ) β 1)) Β· 0) < 0) |
25 | 24 | iffalsed 4539 | . . 3 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β if((((πβπΉ)β((β―βπΉ) β 1)) Β· 0) < 0, 1, 0) = 0) |
26 | 25 | oveq2d 7428 | . 2 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β ((πβπΉ) + if((((πβπΉ)β((β―βπΉ) β 1)) Β· 0) < 0, 1, 0)) = ((πβπΉ) + 0)) |
27 | 2, 3, 4, 5 | signsvvf 33889 | . . . . . 6 β’ π:Word ββΆβ0 |
28 | 27 | a1i 11 | . . . . 5 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β π:Word ββΆβ0) |
29 | 13 | eldifad 3960 | . . . . 5 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β πΉ β Word β) |
30 | 28, 29 | ffvelcdmd 7087 | . . . 4 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (πβπΉ) β β0) |
31 | 30 | nn0cnd 12539 | . . 3 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (πβπΉ) β β) |
32 | 31 | addridd 11419 | . 2 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β ((πβπΉ) + 0) = (πβπΉ)) |
33 | 7, 26, 32 | 3eqtrd 2775 | 1 β’ ((πΉ β (Word β β {β }) β§ (πΉβ0) β 0) β (πβ(πΉ ++ β¨β0ββ©)) = (πβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 β cdif 3945 β wss 3948 β c0 4322 ifcif 4528 {csn 4628 {cpr 4630 {ctp 4632 β¨cop 4634 class class class wbr 5148 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7412 β cmpo 7414 βcc 11112 βcr 11113 0cc0 11114 1c1 11115 + caddc 11117 Β· cmul 11119 < clt 11253 β cmin 11449 -cneg 11450 βcn 12217 β0cn0 12477 ...cfz 13489 ..^cfzo 13632 β―chash 14295 Word cword 14469 ++ cconcat 14525 β¨βcs1 14550 sgncsgn 15038 Ξ£csu 15637 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 Ξ£g cgsu 17391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-word 14470 df-lsw 14518 df-concat 14526 df-s1 14551 df-substr 14596 df-pfx 14626 df-sgn 15039 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-gsum 17393 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mulg 18988 df-cntz 19223 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |