Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signlem0 Structured version   Visualization version   GIF version

Theorem signlem0 34602
Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signlem0 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = (𝑉𝐹))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝐹,𝑛   𝑇,𝑎   𝑛,𝑏,𝑇,𝑓,𝑗
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signlem0
StepHypRef Expression
1 0re 11263 . . 3 0 ∈ ℝ
2 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
3 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
4 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
5 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
62, 3, 4, 5signsvfn 34597 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)))
71, 6mpan2 691 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)))
81ltnri 11370 . . . . 5 ¬ 0 < 0
9 neg1cn 12380 . . . . . . . . 9 -1 ∈ ℂ
10 ax-1cn 11213 . . . . . . . . 9 1 ∈ ℂ
11 prssi 4821 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
129, 10, 11mp2an 692 . . . . . . . 8 {-1, 1} ⊆ ℂ
13 simpl 482 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
14 eldifsn 4786 . . . . . . . . . . 11 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
1513, 14sylib 218 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
16 lennncl 14572 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
17 fzo0end 13797 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1815, 16, 173syl 18 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
192, 3, 4, 5signstfvcl 34588 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1})
2018, 19mpdan 687 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1})
2112, 20sselid 3981 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℂ)
2221mul01d 11460 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) = 0)
2322breq1d 5153 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0))
248, 23mtbiri 327 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) < 0)
2524iffalsed 4536 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0) = 0)
2625oveq2d 7447 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉𝐹) + 0))
272, 3, 4, 5signsvvf 34594 . . . . . 6 𝑉:Word ℝ⟶ℕ0
2827a1i 11 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0)
2913eldifad 3963 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ)
3028, 29ffvelcdmd 7105 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉𝐹) ∈ ℕ0)
3130nn0cnd 12589 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉𝐹) ∈ ℂ)
3231addridd 11461 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉𝐹) + 0) = (𝑉𝐹))
337, 26, 323eqtrd 2781 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = (𝑉𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  wss 3951  c0 4333  ifcif 4525  {csn 4626  {cpr 4628  {ctp 4630  cop 4632   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  -cneg 11493  cn 12266  0cn0 12526  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  sgncsgn 15125  Σcsu 15722  ndxcnx 17230  Basecbs 17247  +gcplusg 17297   Σg cgsu 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-sgn 15126  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mulg 19086  df-cntz 19335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator