| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signlem0 | Structured version Visualization version GIF version | ||
| Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signlem0 | ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11237 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 6 | 2, 3, 4, 5 | signsvfn 34614 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
| 8 | 1 | ltnri 11344 | . . . . 5 ⊢ ¬ 0 < 0 |
| 9 | neg1cn 12354 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 10 | ax-1cn 11187 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 11 | prssi 4797 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . . 8 ⊢ {-1, 1} ⊆ ℂ |
| 13 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
| 14 | eldifsn 4762 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
| 15 | 13, 14 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
| 16 | lennncl 14552 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ) | |
| 17 | fzo0end 13774 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
| 18 | 15, 16, 17 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
| 19 | 2, 3, 4, 5 | signstfvcl 34605 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
| 20 | 18, 19 | mpdan 687 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
| 21 | 12, 20 | sselid 3956 | . . . . . . 7 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℂ) |
| 22 | 21 | mul01d 11434 | . . . . . 6 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) = 0) |
| 23 | 22 | breq1d 5129 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0)) |
| 24 | 8, 23 | mtbiri 327 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0) |
| 25 | 24 | iffalsed 4511 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0) = 0) |
| 26 | 25 | oveq2d 7421 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉‘𝐹) + 0)) |
| 27 | 2, 3, 4, 5 | signsvvf 34611 | . . . . . 6 ⊢ 𝑉:Word ℝ⟶ℕ0 |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0) |
| 29 | 13 | eldifad 3938 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ) |
| 30 | 28, 29 | ffvelcdmd 7075 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℕ0) |
| 31 | 30 | nn0cnd 12564 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℂ) |
| 32 | 31 | addridd 11435 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + 0) = (𝑉‘𝐹)) |
| 33 | 7, 26, 32 | 3eqtrd 2774 | 1 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 ifcif 4500 {csn 4601 {cpr 4603 {ctp 4605 〈cop 4607 class class class wbr 5119 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 − cmin 11466 -cneg 11467 ℕcn 12240 ℕ0cn0 12501 ...cfz 13524 ..^cfzo 13671 ♯chash 14348 Word cword 14531 ++ cconcat 14588 〈“cs1 14613 sgncsgn 15105 Σcsu 15702 ndxcnx 17212 Basecbs 17228 +gcplusg 17271 Σg cgsu 17454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-sgn 15106 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mulg 19051 df-cntz 19300 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |