| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signlem0 | Structured version Visualization version GIF version | ||
| Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signlem0 | ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11263 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 6 | 2, 3, 4, 5 | signsvfn 34597 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
| 8 | 1 | ltnri 11370 | . . . . 5 ⊢ ¬ 0 < 0 |
| 9 | neg1cn 12380 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 10 | ax-1cn 11213 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 11 | prssi 4821 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . . 8 ⊢ {-1, 1} ⊆ ℂ |
| 13 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
| 14 | eldifsn 4786 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
| 15 | 13, 14 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
| 16 | lennncl 14572 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ) | |
| 17 | fzo0end 13797 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
| 18 | 15, 16, 17 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
| 19 | 2, 3, 4, 5 | signstfvcl 34588 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
| 20 | 18, 19 | mpdan 687 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
| 21 | 12, 20 | sselid 3981 | . . . . . . 7 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℂ) |
| 22 | 21 | mul01d 11460 | . . . . . 6 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) = 0) |
| 23 | 22 | breq1d 5153 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0)) |
| 24 | 8, 23 | mtbiri 327 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0) |
| 25 | 24 | iffalsed 4536 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0) = 0) |
| 26 | 25 | oveq2d 7447 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉‘𝐹) + 0)) |
| 27 | 2, 3, 4, 5 | signsvvf 34594 | . . . . . 6 ⊢ 𝑉:Word ℝ⟶ℕ0 |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0) |
| 29 | 13 | eldifad 3963 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ) |
| 30 | 28, 29 | ffvelcdmd 7105 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℕ0) |
| 31 | 30 | nn0cnd 12589 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℂ) |
| 32 | 31 | addridd 11461 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + 0) = (𝑉‘𝐹)) |
| 33 | 7, 26, 32 | 3eqtrd 2781 | 1 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 ifcif 4525 {csn 4626 {cpr 4628 {ctp 4630 〈cop 4632 class class class wbr 5143 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 < clt 11295 − cmin 11492 -cneg 11493 ℕcn 12266 ℕ0cn0 12526 ...cfz 13547 ..^cfzo 13694 ♯chash 14369 Word cword 14552 ++ cconcat 14608 〈“cs1 14633 sgncsgn 15125 Σcsu 15722 ndxcnx 17230 Basecbs 17247 +gcplusg 17297 Σg cgsu 17485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-lsw 14601 df-concat 14609 df-s1 14634 df-substr 14679 df-pfx 14709 df-sgn 15126 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-gsum 17487 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mulg 19086 df-cntz 19335 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |