Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signlem0 | Structured version Visualization version GIF version |
Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signlem0 | ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11078 | . . 3 ⊢ 0 ∈ ℝ | |
2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
6 | 2, 3, 4, 5 | signsvfn 32861 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
7 | 1, 6 | mpan2 688 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0))) |
8 | 1 | ltnri 11185 | . . . . 5 ⊢ ¬ 0 < 0 |
9 | neg1cn 12188 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
10 | ax-1cn 11030 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
11 | prssi 4768 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ) | |
12 | 9, 10, 11 | mp2an 689 | . . . . . . . 8 ⊢ {-1, 1} ⊆ ℂ |
13 | simpl 483 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
14 | eldifsn 4734 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
15 | 13, 14 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
16 | lennncl 14337 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ) | |
17 | fzo0end 13580 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
19 | 2, 3, 4, 5 | signstfvcl 32852 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
20 | 18, 19 | mpdan 684 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1}) |
21 | 12, 20 | sselid 3930 | . . . . . . 7 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℂ) |
22 | 21 | mul01d 11275 | . . . . . 6 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) = 0) |
23 | 22 | breq1d 5102 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0)) |
24 | 8, 23 | mtbiri 326 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0) |
25 | 24 | iffalsed 4484 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0) = 0) |
26 | 25 | oveq2d 7353 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉‘𝐹) + 0)) |
27 | 2, 3, 4, 5 | signsvvf 32858 | . . . . . 6 ⊢ 𝑉:Word ℝ⟶ℕ0 |
28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0) |
29 | 13 | eldifad 3910 | . . . . 5 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ) |
30 | 28, 29 | ffvelcdmd 7018 | . . . 4 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℕ0) |
31 | 30 | nn0cnd 12396 | . . 3 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘𝐹) ∈ ℂ) |
32 | 31 | addid1d 11276 | . 2 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉‘𝐹) + 0) = (𝑉‘𝐹)) |
33 | 7, 26, 32 | 3eqtrd 2780 | 1 ⊢ ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ 〈“0”〉)) = (𝑉‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4269 ifcif 4473 {csn 4573 {cpr 4575 {ctp 4577 〈cop 4579 class class class wbr 5092 ↦ cmpt 5175 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 ℂcc 10970 ℝcr 10971 0cc0 10972 1c1 10973 + caddc 10975 · cmul 10977 < clt 11110 − cmin 11306 -cneg 11307 ℕcn 12074 ℕ0cn0 12334 ...cfz 13340 ..^cfzo 13483 ♯chash 14145 Word cword 14317 ++ cconcat 14373 〈“cs1 14399 sgncsgn 14896 Σcsu 15496 ndxcnx 16991 Basecbs 17009 +gcplusg 17059 Σg cgsu 17248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-word 14318 df-lsw 14366 df-concat 14374 df-s1 14400 df-substr 14452 df-pfx 14482 df-sgn 14897 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-0g 17249 df-gsum 17250 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mulg 18797 df-cntz 19019 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |