| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotacnvN | Structured version Visualization version GIF version | ||
| Description: Version of cdleme51finvtrN 40677 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrniotaval.l | ⊢ ≤ = (le‘𝐾) |
| ltrniotaval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrniotaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrniotaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| ltrniotaval.f | ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| ltrniotacnvN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ◡𝐹 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | ltrniotaval.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | eqid 2733 | . 2 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2733 | . 2 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | ltrniotaval.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | ltrniotaval.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | eqid 2733 | . 2 ⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) | |
| 8 | eqid 2733 | . 2 ⊢ ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) | |
| 9 | eqid 2733 | . 2 ⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) | |
| 10 | eqid 2733 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) | |
| 11 | ltrniotaval.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 12 | ltrniotaval.f | . 2 ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg1finvtrlemN 40694 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ◡𝐹 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ⦋csb 3846 ifcif 4474 class class class wbr 5093 ↦ cmpt 5174 ◡ccnv 5618 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 Basecbs 17122 lecple 17170 joincjn 18219 meetcmee 18220 Atomscatm 39382 HLchlt 39469 LHypclh 40103 LTrncltrn 40220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-riotaBAD 39072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-undef 8209 df-map 8758 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-llines 39617 df-lplanes 39618 df-lvols 39619 df-lines 39620 df-psubsp 39622 df-pmap 39623 df-padd 39915 df-lhyp 40107 df-laut 40108 df-ldil 40223 df-ltrn 40224 df-trl 40278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |