Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltsub23d | Structured version Visualization version GIF version |
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltsub23d.4 | ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐶) |
Ref | Expression |
---|---|
ltsub23d | ⊢ (𝜑 → (𝐴 − 𝐶) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsub23d.4 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐶) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | ltsub23 11565 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ (𝐴 − 𝐶) < 𝐵)) | |
6 | 2, 3, 4, 5 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ (𝐴 − 𝐶) < 𝐵)) |
7 | 1, 6 | mpbid 231 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5100 (class class class)co 7346 ℝcr 10980 < clt 11119 − cmin 11315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-po 5539 df-so 5540 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-ltxr 11124 df-sub 11317 df-neg 11318 |
This theorem is referenced by: xov1plusxeqvd 13340 lebnumii 24239 ivthlem3 24727 uniioombllem3 24859 dvferm2lem 25260 cosne0 25795 lgsquadlem1 26638 sgnsub 32875 mblfinlem3 35972 mblfinlem4 35973 ioodvbdlimc2lem 43863 stoweidlem26 43955 stoweidlem41 43970 fourierdlem107 44142 |
Copyright terms: Public domain | W3C validator |