| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpsubg | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| mhpsubg.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpsubg.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mhpsubg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| mhpsubg | ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpsubg.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpsubg.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) | |
| 5 | 1, 2, 3, 4 | mhpmpl 22007 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (Base‘𝑃)) |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐻‘𝑁) → 𝑥 ∈ (Base‘𝑃))) |
| 7 | 6 | ssrdv 3949 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) ⊆ (Base‘𝑃)) |
| 8 | eqid 2729 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | eqid 2729 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | mhpsubg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | mhpsubg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 12 | mhpsubg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 13 | 1, 8, 9, 10, 11, 12 | mhp0cl 22009 | . . 3 ⊢ (𝜑 → ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝑅)}) ∈ (𝐻‘𝑁)) |
| 14 | 13 | ne0d 4301 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) ≠ ∅) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 16 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑅 ∈ Grp) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑅 ∈ Grp) |
| 18 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) | |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (𝐻‘𝑁)) | |
| 20 | 1, 2, 15, 17, 18, 19 | mhpaddcl 22014 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → (𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁)) |
| 21 | 20 | ralrimiva 3125 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → ∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁)) |
| 22 | eqid 2729 | . . . . 5 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 23 | 1, 2, 22, 16, 4 | mhpinvcl 22015 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁)) |
| 24 | 21, 23 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → (∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))) |
| 25 | 24 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))) |
| 26 | 2 | mplgrp 21902 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 27 | 10, 11, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 28 | 3, 15, 22 | issubg2 19049 | . . 3 ⊢ (𝑃 ∈ Grp → ((𝐻‘𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻‘𝑁) ⊆ (Base‘𝑃) ∧ (𝐻‘𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))))) |
| 29 | 27, 28 | syl 17 | . 2 ⊢ (𝜑 → ((𝐻‘𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻‘𝑁) ⊆ (Base‘𝑃) ∧ (𝐻‘𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))))) |
| 30 | 7, 14, 25, 29 | mpbir3and 1343 | 1 ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3402 ⊆ wss 3911 ∅c0 4292 {csn 4585 × cxp 5629 ◡ccnv 5630 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 +gcplusg 17196 0gc0g 17378 Grpcgrp 18841 invgcminusg 18842 SubGrpcsubg 19028 mPoly cmpl 21791 mHomP cmhp 21992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-psr 21794 df-mpl 21796 df-mhp 21999 |
| This theorem is referenced by: mhplss 22018 |
| Copyright terms: Public domain | W3C validator |