MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsubg Structured version   Visualization version   GIF version

Theorem mhpsubg 22040
Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.)
Hypotheses
Ref Expression
mhpsubg.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsubg.i (𝜑𝐼𝑉)
mhpsubg.r (𝜑𝑅 ∈ Grp)
mhpsubg.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhpsubg (𝜑 → (𝐻𝑁) ∈ (SubGrp‘𝑃))

Proof of Theorem mhpsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsubg.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
2 mhpsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2729 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
4 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (𝐻𝑁))
51, 2, 3, 4mhpmpl 22031 . . . 4 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (Base‘𝑃))
65ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐻𝑁) → 𝑥 ∈ (Base‘𝑃)))
76ssrdv 3952 . 2 (𝜑 → (𝐻𝑁) ⊆ (Base‘𝑃))
8 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
9 eqid 2729 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
10 mhpsubg.i . . . 4 (𝜑𝐼𝑉)
11 mhpsubg.r . . . 4 (𝜑𝑅 ∈ Grp)
12 mhpsubg.n . . . 4 (𝜑𝑁 ∈ ℕ0)
131, 8, 9, 10, 11, 12mhp0cl 22033 . . 3 (𝜑 → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (𝐻𝑁))
1413ne0d 4305 . 2 (𝜑 → (𝐻𝑁) ≠ ∅)
15 eqid 2729 . . . . . 6 (+g𝑃) = (+g𝑃)
1611adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑅 ∈ Grp)
1716adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑅 ∈ Grp)
18 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑥 ∈ (𝐻𝑁))
19 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑦 ∈ (𝐻𝑁))
201, 2, 15, 17, 18, 19mhpaddcl 22038 . . . . 5 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → (𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁))
2120ralrimiva 3125 . . . 4 ((𝜑𝑥 ∈ (𝐻𝑁)) → ∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁))
22 eqid 2729 . . . . 5 (invg𝑃) = (invg𝑃)
231, 2, 22, 16, 4mhpinvcl 22039 . . . 4 ((𝜑𝑥 ∈ (𝐻𝑁)) → ((invg𝑃)‘𝑥) ∈ (𝐻𝑁))
2421, 23jca 511 . . 3 ((𝜑𝑥 ∈ (𝐻𝑁)) → (∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))
2524ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ (𝐻𝑁)(∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))
262mplgrp 21926 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
2710, 11, 26syl2anc 584 . . 3 (𝜑𝑃 ∈ Grp)
283, 15, 22issubg2 19073 . . 3 (𝑃 ∈ Grp → ((𝐻𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻𝑁) ⊆ (Base‘𝑃) ∧ (𝐻𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻𝑁)(∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))))
2927, 28syl 17 . 2 (𝜑 → ((𝐻𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻𝑁) ⊆ (Base‘𝑃) ∧ (𝐻𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻𝑁)(∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))))
307, 14, 25, 29mpbir3and 1343 1 (𝜑 → (𝐻𝑁) ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  wss 3914  c0 4296  {csn 4589   × cxp 5636  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  SubGrpcsubg 19052   mPoly cmpl 21815   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-psr 21818  df-mpl 21820  df-mhp 22023
This theorem is referenced by:  mhplss  22042
  Copyright terms: Public domain W3C validator