| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpsubg | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| mhpsubg.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mhpsubg.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mhpsubg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| mhpsubg | ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpsubg.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpsubg.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) | |
| 5 | 1, 2, 3, 4 | mhpmpl 22029 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (Base‘𝑃)) |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐻‘𝑁) → 𝑥 ∈ (Base‘𝑃))) |
| 7 | 6 | ssrdv 3941 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) ⊆ (Base‘𝑃)) |
| 8 | eqid 2729 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | eqid 2729 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | mhpsubg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | mhpsubg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 12 | mhpsubg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 13 | 1, 8, 9, 10, 11, 12 | mhp0cl 22031 | . . 3 ⊢ (𝜑 → ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝑅)}) ∈ (𝐻‘𝑁)) |
| 14 | 13 | ne0d 4293 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) ≠ ∅) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 16 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑅 ∈ Grp) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑅 ∈ Grp) |
| 18 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) | |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (𝐻‘𝑁)) | |
| 20 | 1, 2, 15, 17, 18, 19 | mhpaddcl 22036 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → (𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁)) |
| 21 | 20 | ralrimiva 3121 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → ∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁)) |
| 22 | eqid 2729 | . . . . 5 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 23 | 1, 2, 22, 16, 4 | mhpinvcl 22037 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁)) |
| 24 | 21, 23 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → (∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))) |
| 25 | 24 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))) |
| 26 | 2 | mplgrp 21924 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 27 | 10, 11, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 28 | 3, 15, 22 | issubg2 19020 | . . 3 ⊢ (𝑃 ∈ Grp → ((𝐻‘𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻‘𝑁) ⊆ (Base‘𝑃) ∧ (𝐻‘𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))))) |
| 29 | 27, 28 | syl 17 | . 2 ⊢ (𝜑 → ((𝐻‘𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻‘𝑁) ⊆ (Base‘𝑃) ∧ (𝐻‘𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))))) |
| 30 | 7, 14, 25, 29 | mpbir3and 1343 | 1 ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3394 ⊆ wss 3903 ∅c0 4284 {csn 4577 × cxp 5617 ◡ccnv 5618 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Fincfn 8872 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 invgcminusg 18813 SubGrpcsubg 18999 mPoly cmpl 21813 mHomP cmhp 22014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-subg 19002 df-psr 21816 df-mpl 21818 df-mhp 22021 |
| This theorem is referenced by: mhplss 22040 |
| Copyright terms: Public domain | W3C validator |