MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsubg Structured version   Visualization version   GIF version

Theorem mhpsubg 20333
Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.)
Hypotheses
Ref Expression
mhpsubg.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsubg.i (𝜑𝐼𝑉)
mhpsubg.r (𝜑𝑅 ∈ Grp)
mhpsubg.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhpsubg (𝜑 → (𝐻𝑁) ∈ (SubGrp‘𝑃))

Proof of Theorem mhpsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsubg.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
2 mhpsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2820 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
4 mhpsubg.i . . . . . 6 (𝜑𝐼𝑉)
54adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝐼𝑉)
6 mhpsubg.r . . . . . 6 (𝜑𝑅 ∈ Grp)
76adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑅 ∈ Grp)
8 mhpsubg.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
98adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑁 ∈ ℕ0)
10 simpr 487 . . . . 5 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (𝐻𝑁))
111, 2, 3, 5, 7, 9, 10mhpmpl 20328 . . . 4 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (Base‘𝑃))
1211ex 415 . . 3 (𝜑 → (𝑥 ∈ (𝐻𝑁) → 𝑥 ∈ (Base‘𝑃)))
1312ssrdv 3966 . 2 (𝜑 → (𝐻𝑁) ⊆ (Base‘𝑃))
14 eqid 2820 . . . 4 (0g𝑅) = (0g𝑅)
15 eqid 2820 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
161, 14, 15, 4, 6, 8mhp0cl 20330 . . 3 (𝜑 → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (𝐻𝑁))
1716ne0d 4294 . 2 (𝜑 → (𝐻𝑁) ≠ ∅)
18 eqid 2820 . . . . . 6 (+g𝑃) = (+g𝑃)
195adantr 483 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝐼𝑉)
207adantr 483 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑅 ∈ Grp)
219adantr 483 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑁 ∈ ℕ0)
22 simplr 767 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑥 ∈ (𝐻𝑁))
23 simpr 487 . . . . . 6 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → 𝑦 ∈ (𝐻𝑁))
241, 2, 18, 19, 20, 21, 22, 23mhpaddcl 20331 . . . . 5 (((𝜑𝑥 ∈ (𝐻𝑁)) ∧ 𝑦 ∈ (𝐻𝑁)) → (𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁))
2524ralrimiva 3181 . . . 4 ((𝜑𝑥 ∈ (𝐻𝑁)) → ∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁))
26 eqid 2820 . . . . 5 (invg𝑃) = (invg𝑃)
271, 2, 26, 5, 7, 9, 10mhpinvcl 20332 . . . 4 ((𝜑𝑥 ∈ (𝐻𝑁)) → ((invg𝑃)‘𝑥) ∈ (𝐻𝑁))
2825, 27jca 514 . . 3 ((𝜑𝑥 ∈ (𝐻𝑁)) → (∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))
2928ralrimiva 3181 . 2 (𝜑 → ∀𝑥 ∈ (𝐻𝑁)(∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))
302mplgrp 20223 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
314, 6, 30syl2anc 586 . . 3 (𝜑𝑃 ∈ Grp)
323, 18, 26issubg2 18287 . . 3 (𝑃 ∈ Grp → ((𝐻𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻𝑁) ⊆ (Base‘𝑃) ∧ (𝐻𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻𝑁)(∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))))
3331, 32syl 17 . 2 (𝜑 → ((𝐻𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻𝑁) ⊆ (Base‘𝑃) ∧ (𝐻𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻𝑁)(∀𝑦 ∈ (𝐻𝑁)(𝑥(+g𝑃)𝑦) ∈ (𝐻𝑁) ∧ ((invg𝑃)‘𝑥) ∈ (𝐻𝑁)))))
3413, 17, 29, 33mpbir3and 1337 1 (𝜑 → (𝐻𝑁) ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wral 3137  {crab 3141  wss 3929  c0 4284  {csn 4560   × cxp 5546  ccnv 5547  cima 5551  cfv 6348  (class class class)co 7149  m cmap 8399  Fincfn 8502  cn 11631  0cn0 11891  Basecbs 16476  +gcplusg 16558  0gc0g 16706  Grpcgrp 18096  invgcminusg 18097  SubGrpcsubg 18266   mPoly cmpl 20126   mHomP cmhp 20315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-sca 16574  df-vsca 16575  df-tset 16577  df-0g 16708  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-grp 18099  df-minusg 18100  df-subg 18269  df-psr 20129  df-mpl 20131  df-mhp 20319
This theorem is referenced by:  mhplss  20335
  Copyright terms: Public domain W3C validator