![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpsubg | Structured version Visualization version GIF version |
Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.) |
Ref | Expression |
---|---|
mhpsubg.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpsubg.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpsubg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
mhpsubg | ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpsubg.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpsubg.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | mhpsubg.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | 4 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝐼 ∈ 𝑉) |
6 | mhpsubg.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
7 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑅 ∈ Grp) |
8 | mhpsubg.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑁 ∈ ℕ0) |
10 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) | |
11 | 1, 2, 3, 5, 7, 9, 10 | mhpmpl 22134 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (Base‘𝑃)) |
12 | 11 | ex 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐻‘𝑁) → 𝑥 ∈ (Base‘𝑃))) |
13 | 12 | ssrdv 3984 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) ⊆ (Base‘𝑃)) |
14 | eqid 2726 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2726 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
16 | 1, 14, 15, 4, 6, 8 | mhp0cl 22136 | . . 3 ⊢ (𝜑 → ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝑅)}) ∈ (𝐻‘𝑁)) |
17 | 16 | ne0d 4335 | . 2 ⊢ (𝜑 → (𝐻‘𝑁) ≠ ∅) |
18 | eqid 2726 | . . . . . 6 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
19 | 7 | adantr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑅 ∈ Grp) |
20 | 9 | adantr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑁 ∈ ℕ0) |
21 | simplr 767 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) | |
22 | simpr 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (𝐻‘𝑁)) | |
23 | 1, 2, 18, 19, 20, 21, 22 | mhpaddcl 22141 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑁)) → (𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁)) |
24 | 23 | ralrimiva 3136 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → ∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁)) |
25 | eqid 2726 | . . . . 5 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
26 | 1, 2, 25, 7, 9, 10 | mhpinvcl 22142 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁)) |
27 | 24, 26 | jca 510 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → (∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))) |
28 | 27 | ralrimiva 3136 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))) |
29 | 2 | mplgrp 22022 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
30 | 4, 6, 29 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
31 | 3, 18, 25 | issubg2 19131 | . . 3 ⊢ (𝑃 ∈ Grp → ((𝐻‘𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻‘𝑁) ⊆ (Base‘𝑃) ∧ (𝐻‘𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))))) |
32 | 30, 31 | syl 17 | . 2 ⊢ (𝜑 → ((𝐻‘𝑁) ∈ (SubGrp‘𝑃) ↔ ((𝐻‘𝑁) ⊆ (Base‘𝑃) ∧ (𝐻‘𝑁) ≠ ∅ ∧ ∀𝑥 ∈ (𝐻‘𝑁)(∀𝑦 ∈ (𝐻‘𝑁)(𝑥(+g‘𝑃)𝑦) ∈ (𝐻‘𝑁) ∧ ((invg‘𝑃)‘𝑥) ∈ (𝐻‘𝑁))))) |
33 | 13, 17, 28, 32 | mpbir3and 1339 | 1 ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 {crab 3419 ⊆ wss 3946 ∅c0 4322 {csn 4623 × cxp 5672 ◡ccnv 5673 “ cima 5677 ‘cfv 6546 (class class class)co 7416 ↑m cmap 8847 Fincfn 8966 ℕcn 12258 ℕ0cn0 12518 Basecbs 17208 +gcplusg 17261 0gc0g 17449 Grpcgrp 18923 invgcminusg 18924 SubGrpcsubg 19110 mPoly cmpl 21899 mHomP cmhp 22120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-prds 17457 df-pws 17459 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-subg 19113 df-psr 21902 df-mpl 21904 df-mhp 22127 |
This theorem is referenced by: mhplss 22145 |
Copyright terms: Public domain | W3C validator |