| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgt0d | Structured version Visualization version GIF version | ||
| Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
| mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
| 5 | mulgt0 11201 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 · cmul 11022 < clt 11157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-mulrcl 11080 ax-rnegex 11088 ax-cnre 11090 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 |
| This theorem is referenced by: recgt0 11978 prodgt0 11979 ltmul1a 11981 prodge0rd 13005 expmulnbnd 14149 itg2monolem3 25700 tangtx 26461 tanregt0 26495 asinsinlem 26848 asinsin 26849 ostth2lem3 27593 xrge0iifhom 34022 unbdqndv2lem2 36626 knoppndvlem14 36641 knoppndvlem18 36645 knoppndvlem19 36646 knoppndvlem21 36648 itg2gt0cn 37788 lcmineqlem15 42209 posbezout 42266 mulgt0con1d 42640 mulgt0con2d 42641 mulgt0b1d 42642 sn-0lt1 42645 mulgt0b2d 42648 sn-msqgt0d 42656 pell14qrmulcl 43020 rmxypos 43104 jm2.27a 43162 stoweidlem1 46161 stoweidlem26 46186 stoweidlem44 46204 stoweidlem49 46209 wallispilem4 46228 stirlinglem6 46239 itscnhlinecirc02plem1 48944 |
| Copyright terms: Public domain | W3C validator |