MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0d Structured version   Visualization version   GIF version

Theorem mulgt0d 11263
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
mulgt0d.3 (𝜑 → 0 < 𝐴)
mulgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
mulgt0d (𝜑 → 0 < (𝐴 · 𝐵))

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 mulgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 mulgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 mulgt0 11185 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑 → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5086  (class class class)co 7341  cr 11000  0cc0 11001   · cmul 11006   < clt 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-addrcl 11062  ax-mulrcl 11064  ax-rnegex 11072  ax-cnre 11074  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146
This theorem is referenced by:  recgt0  11962  prodgt0  11963  ltmul1a  11965  prodge0rd  12994  expmulnbnd  14137  itg2monolem3  25675  tangtx  26436  tanregt0  26470  asinsinlem  26823  asinsin  26824  ostth2lem3  27568  xrge0iifhom  33942  unbdqndv2lem2  36544  knoppndvlem14  36559  knoppndvlem18  36563  knoppndvlem19  36564  knoppndvlem21  36566  itg2gt0cn  37715  lcmineqlem15  42076  posbezout  42133  mulgt0con1d  42503  mulgt0con2d  42504  mulgt0b1d  42505  sn-0lt1  42508  mulgt0b2d  42511  sn-msqgt0d  42519  pell14qrmulcl  42896  rmxypos  42980  jm2.27a  43038  stoweidlem1  46039  stoweidlem26  46064  stoweidlem44  46082  stoweidlem49  46087  wallispilem4  46106  stirlinglem6  46117  itscnhlinecirc02plem1  48814
  Copyright terms: Public domain W3C validator