| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgt0d | Structured version Visualization version GIF version | ||
| Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
| mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
| 5 | mulgt0 11185 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 · cmul 11006 < clt 11141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-mulrcl 11064 ax-rnegex 11072 ax-cnre 11074 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 |
| This theorem is referenced by: recgt0 11962 prodgt0 11963 ltmul1a 11965 prodge0rd 12994 expmulnbnd 14137 itg2monolem3 25675 tangtx 26436 tanregt0 26470 asinsinlem 26823 asinsin 26824 ostth2lem3 27568 xrge0iifhom 33942 unbdqndv2lem2 36544 knoppndvlem14 36559 knoppndvlem18 36563 knoppndvlem19 36564 knoppndvlem21 36566 itg2gt0cn 37715 lcmineqlem15 42076 posbezout 42133 mulgt0con1d 42503 mulgt0con2d 42504 mulgt0b1d 42505 sn-0lt1 42508 mulgt0b2d 42511 sn-msqgt0d 42519 pell14qrmulcl 42896 rmxypos 42980 jm2.27a 43038 stoweidlem1 46039 stoweidlem26 46064 stoweidlem44 46082 stoweidlem49 46087 wallispilem4 46106 stirlinglem6 46117 itscnhlinecirc02plem1 48814 |
| Copyright terms: Public domain | W3C validator |