| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgt0d | Structured version Visualization version GIF version | ||
| Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
| mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
| 5 | mulgt0 11227 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 · cmul 11049 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-mulrcl 11107 ax-rnegex 11115 ax-cnre 11117 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: recgt0 12004 prodgt0 12005 ltmul1a 12007 prodge0rd 13036 expmulnbnd 14176 itg2monolem3 25629 tangtx 26390 tanregt0 26424 asinsinlem 26777 asinsin 26778 ostth2lem3 27522 xrge0iifhom 33900 unbdqndv2lem2 36471 knoppndvlem14 36486 knoppndvlem18 36490 knoppndvlem19 36491 knoppndvlem21 36493 itg2gt0cn 37642 lcmineqlem15 42004 posbezout 42061 mulgt0con1d 42431 mulgt0con2d 42432 mulgt0b1d 42433 sn-0lt1 42436 mulgt0b2d 42439 sn-msqgt0d 42447 pell14qrmulcl 42824 rmxypos 42909 jm2.27a 42967 stoweidlem1 45972 stoweidlem26 45997 stoweidlem44 46015 stoweidlem49 46020 wallispilem4 46039 stirlinglem6 46050 itscnhlinecirc02plem1 48744 |
| Copyright terms: Public domain | W3C validator |