![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgt0d | Structured version Visualization version GIF version |
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
Ref | Expression |
---|---|
mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
5 | mulgt0 11367 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 · cmul 11189 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-mulrcl 11247 ax-rnegex 11255 ax-cnre 11257 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: recgt0 12140 prodgt0 12141 ltmul1a 12143 prodge0rd 13164 expmulnbnd 14284 itg2monolem3 25807 tangtx 26565 tanregt0 26599 asinsinlem 26952 asinsin 26953 ostth2lem3 27697 xrge0iifhom 33883 unbdqndv2lem2 36476 knoppndvlem14 36491 knoppndvlem18 36495 knoppndvlem19 36496 knoppndvlem21 36498 itg2gt0cn 37635 lcmineqlem15 42000 posbezout 42057 mulgt0con1d 42434 mulgt0con2d 42435 mulgt0b2d 42436 sn-0lt1 42439 pell14qrmulcl 42819 rmxypos 42904 jm2.27a 42962 stoweidlem1 45922 stoweidlem26 45947 stoweidlem44 45965 stoweidlem49 45970 wallispilem4 45989 stirlinglem6 46000 itscnhlinecirc02plem1 48516 |
Copyright terms: Public domain | W3C validator |