MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0d Structured version   Visualization version   GIF version

Theorem mulgt0d 11401
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
mulgt0d.3 (𝜑 → 0 < 𝐴)
mulgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
mulgt0d (𝜑 → 0 < (𝐴 · 𝐵))

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 mulgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 mulgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 mulgt0 11323 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
61, 2, 3, 4, 5syl22anc 837 1 (𝜑 → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5149  (class class class)co 7419  cr 11139  0cc0 11140   · cmul 11145   < clt 11280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-addrcl 11201  ax-mulrcl 11203  ax-rnegex 11211  ax-cnre 11213  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-ltxr 11285
This theorem is referenced by:  recgt0  12093  prodgt0  12094  ltmul1a  12096  prodge0rd  13116  expmulnbnd  14233  itg2monolem3  25726  tangtx  26485  tanregt0  26518  asinsinlem  26868  asinsin  26869  ostth2lem3  27613  xrge0iifhom  33669  unbdqndv2lem2  36116  knoppndvlem14  36131  knoppndvlem18  36135  knoppndvlem19  36136  knoppndvlem21  36138  itg2gt0cn  37279  lcmineqlem15  41646  posbezout  41703  mulgt0con1d  42148  mulgt0con2d  42149  mulgt0b2d  42150  sn-0lt1  42152  pell14qrmulcl  42425  rmxypos  42510  jm2.27a  42568  stoweidlem1  45527  stoweidlem26  45552  stoweidlem44  45570  stoweidlem49  45575  wallispilem4  45594  stirlinglem6  45605  itscnhlinecirc02plem1  48041
  Copyright terms: Public domain W3C validator