| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgt0d | Structured version Visualization version GIF version | ||
| Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
| mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
| 5 | mulgt0 11317 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 · cmul 11139 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-mulrcl 11197 ax-rnegex 11205 ax-cnre 11207 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 |
| This theorem is referenced by: recgt0 12092 prodgt0 12093 ltmul1a 12095 prodge0rd 13121 expmulnbnd 14258 itg2monolem3 25710 tangtx 26471 tanregt0 26505 asinsinlem 26858 asinsin 26859 ostth2lem3 27603 xrge0iifhom 33973 unbdqndv2lem2 36533 knoppndvlem14 36548 knoppndvlem18 36552 knoppndvlem19 36553 knoppndvlem21 36555 itg2gt0cn 37704 lcmineqlem15 42061 posbezout 42118 mulgt0con1d 42468 mulgt0con2d 42469 mulgt0b2d 42470 sn-0lt1 42473 pell14qrmulcl 42853 rmxypos 42938 jm2.27a 42996 stoweidlem1 45997 stoweidlem26 46022 stoweidlem44 46040 stoweidlem49 46045 wallispilem4 46064 stirlinglem6 46075 itscnhlinecirc02plem1 48729 |
| Copyright terms: Public domain | W3C validator |