MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0d Structured version   Visualization version   GIF version

Theorem mulgt0d 11060
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
mulgt0d.3 (𝜑 → 0 < 𝐴)
mulgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
mulgt0d (𝜑 → 0 < (𝐴 · 𝐵))

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 mulgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 mulgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 mulgt0 10983 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
61, 2, 3, 4, 5syl22anc 835 1 (𝜑 → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-addrcl 10863  ax-mulrcl 10865  ax-rnegex 10873  ax-cnre 10875  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945
This theorem is referenced by:  recgt0  11751  prodgt0  11752  ltmul1a  11754  prodge0rd  12766  expmulnbnd  13878  itg2monolem3  24822  tangtx  25567  tanregt0  25600  asinsinlem  25946  asinsin  25947  ostth2lem3  26688  xrge0iifhom  31789  unbdqndv2lem2  34617  knoppndvlem14  34632  knoppndvlem18  34636  knoppndvlem19  34637  knoppndvlem21  34639  itg2gt0cn  35759  lcmineqlem15  39979  mulgt0con1d  40349  mulgt0con2d  40350  mulgt0b2d  40351  sn-0lt1  40353  pell14qrmulcl  40601  rmxypos  40685  jm2.27a  40743  stoweidlem1  43432  stoweidlem26  43457  stoweidlem44  43475  stoweidlem49  43480  wallispilem4  43499  stirlinglem6  43510  itscnhlinecirc02plem1  46016
  Copyright terms: Public domain W3C validator