MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0d Structured version   Visualization version   GIF version

Theorem mulgt0d 11414
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
mulgt0d.3 (𝜑 → 0 < 𝐴)
mulgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
mulgt0d (𝜑 → 0 < (𝐴 · 𝐵))

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 mulgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 mulgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 mulgt0 11336 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
61, 2, 3, 4, 5syl22anc 839 1 (𝜑 → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158   < clt 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-addrcl 11214  ax-mulrcl 11216  ax-rnegex 11224  ax-cnre 11226  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298
This theorem is referenced by:  recgt0  12111  prodgt0  12112  ltmul1a  12114  prodge0rd  13140  expmulnbnd  14271  itg2monolem3  25802  tangtx  26562  tanregt0  26596  asinsinlem  26949  asinsin  26950  ostth2lem3  27694  xrge0iifhom  33898  unbdqndv2lem2  36493  knoppndvlem14  36508  knoppndvlem18  36512  knoppndvlem19  36513  knoppndvlem21  36515  itg2gt0cn  37662  lcmineqlem15  42025  posbezout  42082  mulgt0con1d  42465  mulgt0con2d  42466  mulgt0b2d  42467  sn-0lt1  42470  pell14qrmulcl  42851  rmxypos  42936  jm2.27a  42994  stoweidlem1  45957  stoweidlem26  45982  stoweidlem44  46000  stoweidlem49  46005  wallispilem4  46024  stirlinglem6  46035  itscnhlinecirc02plem1  48632
  Copyright terms: Public domain W3C validator