![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgt0d | Structured version Visualization version GIF version |
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | โข (๐ โ ๐ด โ โ) |
ltd.2 | โข (๐ โ ๐ต โ โ) |
mulgt0d.3 | โข (๐ โ 0 < ๐ด) |
mulgt0d.4 | โข (๐ โ 0 < ๐ต) |
Ref | Expression |
---|---|
mulgt0d | โข (๐ โ 0 < (๐ด ยท ๐ต)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | mulgt0d.3 | . 2 โข (๐ โ 0 < ๐ด) | |
3 | ltd.2 | . 2 โข (๐ โ ๐ต โ โ) | |
4 | mulgt0d.4 | . 2 โข (๐ โ 0 < ๐ต) | |
5 | mulgt0 11298 | . 2 โข (((๐ด โ โ โง 0 < ๐ด) โง (๐ต โ โ โง 0 < ๐ต)) โ 0 < (๐ด ยท ๐ต)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 836 | 1 โข (๐ โ 0 < (๐ด ยท ๐ต)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2105 class class class wbr 5148 (class class class)co 7412 โcr 11115 0cc0 11116 ยท cmul 11121 < clt 11255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-addrcl 11177 ax-mulrcl 11179 ax-rnegex 11187 ax-cnre 11189 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 |
This theorem is referenced by: recgt0 12067 prodgt0 12068 ltmul1a 12070 prodge0rd 13088 expmulnbnd 14205 itg2monolem3 25602 tangtx 26355 tanregt0 26388 asinsinlem 26737 asinsin 26738 ostth2lem3 27482 xrge0iifhom 33382 unbdqndv2lem2 35852 knoppndvlem14 35867 knoppndvlem18 35871 knoppndvlem19 35872 knoppndvlem21 35874 itg2gt0cn 37009 lcmineqlem15 41377 mulgt0con1d 41796 mulgt0con2d 41797 mulgt0b2d 41798 sn-0lt1 41800 pell14qrmulcl 42066 rmxypos 42151 jm2.27a 42209 stoweidlem1 45178 stoweidlem26 45203 stoweidlem44 45221 stoweidlem49 45226 wallispilem4 45245 stirlinglem6 45256 itscnhlinecirc02plem1 47632 |
Copyright terms: Public domain | W3C validator |