MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt1OLD Structured version   Visualization version   GIF version

Theorem mulgt1OLD 12001
Description: Obsolete version of mulgt1 12004 as of 29-Jun-2025. (Contributed by NM, 13-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mulgt1OLD (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))

Proof of Theorem mulgt1OLD
StepHypRef Expression
1 simpl 482 . . . . 5 ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴)
21a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴))
3 0lt1 11660 . . . . . . . . 9 0 < 1
4 0re 11136 . . . . . . . . . 10 0 ∈ ℝ
5 1re 11134 . . . . . . . . . 10 1 ∈ ℝ
6 lttr 11210 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
74, 5, 6mp3an12 1453 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
83, 7mpani 696 . . . . . . . 8 (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴))
98adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → 0 < 𝐴))
10 ltmul2 11993 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵)))
1110biimpd 229 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))
125, 11mp3an1 1450 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))
1312exp32 420 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))))
1413impcom 407 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))
159, 14syld 47 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))
1615impd 410 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (𝐴 · 1) < (𝐴 · 𝐵)))
17 ax-1rid 11098 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1817adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 1) = 𝐴)
1918breq1d 5105 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) < (𝐴 · 𝐵) ↔ 𝐴 < (𝐴 · 𝐵)))
2016, 19sylibd 239 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 𝐴 < (𝐴 · 𝐵)))
212, 20jcad 512 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < (𝐴 · 𝐵))))
22 remulcl 11113 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
23 lttr 11210 . . . . 5 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
245, 23mp3an1 1450 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
2522, 24syldan 591 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
2621, 25syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < (𝐴 · 𝐵)))
2726imp 406 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator