| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-remul0ord | Structured version Visualization version GIF version | ||
| Description: A product is zero iff one of its factors are zero. (Contributed by SN, 24-Nov-2025.) |
| Ref | Expression |
|---|---|
| sn-remul0ord.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| sn-remul0ord.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| sn-remul0ord | ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-remul0ord.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | remul02 42388 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (0 · 𝐵) = 0) | |
| 3 | 1, 2 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (0 · 𝐵) = 0) |
| 4 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → (0 · 𝐵) = 0) |
| 5 | 4 | eqeq2d 2741 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ (𝐴 · 𝐵) = 0)) |
| 6 | sn-remul0ord.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ) |
| 8 | 0red 11183 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → 0 ∈ ℝ) | |
| 9 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ) |
| 10 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
| 11 | 7, 8, 9, 10 | remulcan2d 42240 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = (0 · 𝐵) ↔ 𝐴 = 0)) |
| 12 | 5, 11 | bitr3d 281 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 ↔ 𝐴 = 0)) |
| 13 | 12 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) = 0 → 𝐴 = 0)) |
| 14 | 13 | impancom 451 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 · 𝐵) = 0) → (𝐵 ≠ 0 → 𝐴 = 0)) |
| 15 | 14 | necon1bd 2944 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0)) |
| 16 | 15 | orrd 863 | . . 3 ⊢ ((𝜑 ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0)) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0))) |
| 18 | oveq1 7396 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵)) | |
| 19 | 18 | eqeq1d 2732 | . . . 4 ⊢ (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0)) |
| 20 | 3, 19 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐴 = 0 → (𝐴 · 𝐵) = 0)) |
| 21 | remul01 42390 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | |
| 22 | 6, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 · 0) = 0) |
| 23 | oveq2 7397 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0)) | |
| 24 | 23 | eqeq1d 2732 | . . . 4 ⊢ (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0)) |
| 25 | 22, 24 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → (𝐵 = 0 → (𝐴 · 𝐵) = 0)) |
| 26 | 20, 25 | jaod 859 | . 2 ⊢ (𝜑 → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0)) |
| 27 | 17, 26 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7389 ℝcr 11073 0cc0 11074 · cmul 11079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-2 12250 df-3 12251 df-resub 42349 |
| This theorem is referenced by: mulltgt0d 42465 mullt0b2d 42467 |
| Copyright terms: Public domain | W3C validator |