![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muls4d | Structured version Visualization version GIF version |
Description: Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025.) |
Ref | Expression |
---|---|
muls4d.1 | โข (๐ โ ๐ด โ No ) |
muls4d.2 | โข (๐ โ ๐ต โ No ) |
muls4d.3 | โข (๐ โ ๐ถ โ No ) |
muls4d.4 | โข (๐ โ ๐ท โ No ) |
Ref | Expression |
---|---|
muls4d | โข (๐ โ ((๐ด ยทs ๐ต) ยทs (๐ถ ยทs ๐ท)) = ((๐ด ยทs ๐ถ) ยทs (๐ต ยทs ๐ท))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muls4d.2 | . . . . . 6 โข (๐ โ ๐ต โ No ) | |
2 | muls4d.3 | . . . . . 6 โข (๐ โ ๐ถ โ No ) | |
3 | 1, 2 | mulscomd 28033 | . . . . 5 โข (๐ โ (๐ต ยทs ๐ถ) = (๐ถ ยทs ๐ต)) |
4 | 3 | oveq1d 7429 | . . . 4 โข (๐ โ ((๐ต ยทs ๐ถ) ยทs ๐ท) = ((๐ถ ยทs ๐ต) ยทs ๐ท)) |
5 | muls4d.4 | . . . . 5 โข (๐ โ ๐ท โ No ) | |
6 | 1, 2, 5 | mulsassd 28060 | . . . 4 โข (๐ โ ((๐ต ยทs ๐ถ) ยทs ๐ท) = (๐ต ยทs (๐ถ ยทs ๐ท))) |
7 | 2, 1, 5 | mulsassd 28060 | . . . 4 โข (๐ โ ((๐ถ ยทs ๐ต) ยทs ๐ท) = (๐ถ ยทs (๐ต ยทs ๐ท))) |
8 | 4, 6, 7 | 3eqtr3d 2775 | . . 3 โข (๐ โ (๐ต ยทs (๐ถ ยทs ๐ท)) = (๐ถ ยทs (๐ต ยทs ๐ท))) |
9 | 8 | oveq2d 7430 | . 2 โข (๐ โ (๐ด ยทs (๐ต ยทs (๐ถ ยทs ๐ท))) = (๐ด ยทs (๐ถ ยทs (๐ต ยทs ๐ท)))) |
10 | muls4d.1 | . . 3 โข (๐ โ ๐ด โ No ) | |
11 | 2, 5 | mulscld 28028 | . . 3 โข (๐ โ (๐ถ ยทs ๐ท) โ No ) |
12 | 10, 1, 11 | mulsassd 28060 | . 2 โข (๐ โ ((๐ด ยทs ๐ต) ยทs (๐ถ ยทs ๐ท)) = (๐ด ยทs (๐ต ยทs (๐ถ ยทs ๐ท)))) |
13 | 1, 5 | mulscld 28028 | . . 3 โข (๐ โ (๐ต ยทs ๐ท) โ No ) |
14 | 10, 2, 13 | mulsassd 28060 | . 2 โข (๐ โ ((๐ด ยทs ๐ถ) ยทs (๐ต ยทs ๐ท)) = (๐ด ยทs (๐ถ ยทs (๐ต ยทs ๐ท)))) |
15 | 9, 12, 14 | 3eqtr4d 2777 | 1 โข (๐ โ ((๐ด ยทs ๐ต) ยทs (๐ถ ยทs ๐ท)) = ((๐ด ยทs ๐ถ) ยทs (๐ต ยทs ๐ท))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1534 โ wcel 2099 (class class class)co 7414 No csur 27566 ยทs cmuls 27999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-nadd 8680 df-no 27569 df-slt 27570 df-bday 27571 df-sle 27671 df-sslt 27707 df-scut 27709 df-0s 27750 df-made 27767 df-old 27768 df-left 27770 df-right 27771 df-norec 27848 df-norec2 27859 df-adds 27870 df-negs 27927 df-subs 27928 df-muls 28000 |
This theorem is referenced by: divmuldivsd 28123 |
Copyright terms: Public domain | W3C validator |