| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divmuldivsd | Structured version Visualization version GIF version | ||
| Description: Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| divmuldivsd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divmuldivsd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divmuldivsd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divmuldivsd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
| divmuldivsd.5 | ⊢ (𝜑 → 𝐵 ≠ 0s ) |
| divmuldivsd.6 | ⊢ (𝜑 → 𝐷 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divmuldivsd | ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divmuldivsd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divmuldivsd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ No ) | |
| 3 | divmuldivsd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | divmuldivsd.5 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 5 | 3, 1, 4 | divscld 28126 | . . . . 5 ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) |
| 6 | divmuldivsd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 7 | divmuldivsd.6 | . . . . . 6 ⊢ (𝜑 → 𝐷 ≠ 0s ) | |
| 8 | 6, 2, 7 | divscld 28126 | . . . . 5 ⊢ (𝜑 → (𝐶 /su 𝐷) ∈ No ) |
| 9 | 1, 2, 5, 8 | muls4d 28071 | . . . 4 ⊢ (𝜑 → ((𝐵 ·s 𝐷) ·s ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) = ((𝐵 ·s (𝐴 /su 𝐵)) ·s (𝐷 ·s (𝐶 /su 𝐷)))) |
| 10 | 3, 1, 4 | divscan2d 28127 | . . . . 5 ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) |
| 11 | 6, 2, 7 | divscan2d 28127 | . . . . 5 ⊢ (𝜑 → (𝐷 ·s (𝐶 /su 𝐷)) = 𝐶) |
| 12 | 10, 11 | oveq12d 7405 | . . . 4 ⊢ (𝜑 → ((𝐵 ·s (𝐴 /su 𝐵)) ·s (𝐷 ·s (𝐶 /su 𝐷))) = (𝐴 ·s 𝐶)) |
| 13 | 9, 12 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((𝐵 ·s 𝐷) ·s ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) = (𝐴 ·s 𝐶)) |
| 14 | 3, 6 | mulscld 28038 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No ) |
| 15 | 5, 8 | mulscld 28038 | . . . 4 ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) ∈ No ) |
| 16 | 1, 2 | mulscld 28038 | . . . 4 ⊢ (𝜑 → (𝐵 ·s 𝐷) ∈ No ) |
| 17 | 1, 2 | mulsne0bd 28089 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐷) ≠ 0s ↔ (𝐵 ≠ 0s ∧ 𝐷 ≠ 0s ))) |
| 18 | 4, 7, 17 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (𝐵 ·s 𝐷) ≠ 0s ) |
| 19 | 14, 15, 16, 18 | divsmuld 28124 | . . 3 ⊢ (𝜑 → (((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷)) = ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) ↔ ((𝐵 ·s 𝐷) ·s ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) = (𝐴 ·s 𝐶))) |
| 20 | 13, 19 | mpbird 257 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷)) = ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) |
| 21 | 20 | eqcomd 2735 | 1 ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 No csur 27551 0s c0s 27734 ·s cmuls 28009 /su cdivs 28090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-dc 10399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 df-muls 28010 df-divs 28091 |
| This theorem is referenced by: remulscllem1 28351 |
| Copyright terms: Public domain | W3C validator |