|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > divmuldivsd | Structured version Visualization version GIF version | ||
| Description: Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| divmuldivsd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) | 
| divmuldivsd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) | 
| divmuldivsd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) | 
| divmuldivsd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) | 
| divmuldivsd.5 | ⊢ (𝜑 → 𝐵 ≠ 0s ) | 
| divmuldivsd.6 | ⊢ (𝜑 → 𝐷 ≠ 0s ) | 
| Ref | Expression | 
|---|---|
| divmuldivsd | ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | divmuldivsd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divmuldivsd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ No ) | |
| 3 | divmuldivsd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | divmuldivsd.5 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 0s ) | |
| 5 | 3, 1, 4 | divscld 28248 | . . . . 5 ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | 
| 6 | divmuldivsd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 7 | divmuldivsd.6 | . . . . . 6 ⊢ (𝜑 → 𝐷 ≠ 0s ) | |
| 8 | 6, 2, 7 | divscld 28248 | . . . . 5 ⊢ (𝜑 → (𝐶 /su 𝐷) ∈ No ) | 
| 9 | 1, 2, 5, 8 | muls4d 28194 | . . . 4 ⊢ (𝜑 → ((𝐵 ·s 𝐷) ·s ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) = ((𝐵 ·s (𝐴 /su 𝐵)) ·s (𝐷 ·s (𝐶 /su 𝐷)))) | 
| 10 | 3, 1, 4 | divscan2d 28249 | . . . . 5 ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | 
| 11 | 6, 2, 7 | divscan2d 28249 | . . . . 5 ⊢ (𝜑 → (𝐷 ·s (𝐶 /su 𝐷)) = 𝐶) | 
| 12 | 10, 11 | oveq12d 7449 | . . . 4 ⊢ (𝜑 → ((𝐵 ·s (𝐴 /su 𝐵)) ·s (𝐷 ·s (𝐶 /su 𝐷))) = (𝐴 ·s 𝐶)) | 
| 13 | 9, 12 | eqtrd 2777 | . . 3 ⊢ (𝜑 → ((𝐵 ·s 𝐷) ·s ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) = (𝐴 ·s 𝐶)) | 
| 14 | 3, 6 | mulscld 28161 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No ) | 
| 15 | 5, 8 | mulscld 28161 | . . . 4 ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) ∈ No ) | 
| 16 | 1, 2 | mulscld 28161 | . . . 4 ⊢ (𝜑 → (𝐵 ·s 𝐷) ∈ No ) | 
| 17 | 1, 2 | mulsne0bd 28212 | . . . . 5 ⊢ (𝜑 → ((𝐵 ·s 𝐷) ≠ 0s ↔ (𝐵 ≠ 0s ∧ 𝐷 ≠ 0s ))) | 
| 18 | 4, 7, 17 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → (𝐵 ·s 𝐷) ≠ 0s ) | 
| 19 | 14, 15, 16, 18 | divsmuld 28246 | . . 3 ⊢ (𝜑 → (((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷)) = ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) ↔ ((𝐵 ·s 𝐷) ·s ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) = (𝐴 ·s 𝐶))) | 
| 20 | 13, 19 | mpbird 257 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷)) = ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷))) | 
| 21 | 20 | eqcomd 2743 | 1 ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 (class class class)co 7431 No csur 27684 0s c0s 27867 ·s cmuls 28132 /su cdivs 28213 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-dc 10486 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-nadd 8704 df-no 27687 df-slt 27688 df-bday 27689 df-sle 27790 df-sslt 27826 df-scut 27828 df-0s 27869 df-1s 27870 df-made 27886 df-old 27887 df-left 27889 df-right 27890 df-norec 27971 df-norec2 27982 df-adds 27993 df-negs 28053 df-subs 28054 df-muls 28133 df-divs 28214 | 
| This theorem is referenced by: remulscllem1 28432 | 
| Copyright terms: Public domain | W3C validator |