![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divmuldivsd | Structured version Visualization version GIF version |
Description: Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025.) |
Ref | Expression |
---|---|
divmuldivsd.1 | โข (๐ โ ๐ด โ No ) |
divmuldivsd.2 | โข (๐ โ ๐ต โ No ) |
divmuldivsd.3 | โข (๐ โ ๐ถ โ No ) |
divmuldivsd.4 | โข (๐ โ ๐ท โ No ) |
divmuldivsd.5 | โข (๐ โ ๐ต โ 0s ) |
divmuldivsd.6 | โข (๐ โ ๐ท โ 0s ) |
Ref | Expression |
---|---|
divmuldivsd | โข (๐ โ ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท)) = ((๐ด ยทs ๐ถ) /su (๐ต ยทs ๐ท))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divmuldivsd.2 | . . . . 5 โข (๐ โ ๐ต โ No ) | |
2 | divmuldivsd.4 | . . . . 5 โข (๐ โ ๐ท โ No ) | |
3 | divmuldivsd.1 | . . . . . 6 โข (๐ โ ๐ด โ No ) | |
4 | divmuldivsd.5 | . . . . . 6 โข (๐ โ ๐ต โ 0s ) | |
5 | 3, 1, 4 | divscld 28077 | . . . . 5 โข (๐ โ (๐ด /su ๐ต) โ No ) |
6 | divmuldivsd.3 | . . . . . 6 โข (๐ โ ๐ถ โ No ) | |
7 | divmuldivsd.6 | . . . . . 6 โข (๐ โ ๐ท โ 0s ) | |
8 | 6, 2, 7 | divscld 28077 | . . . . 5 โข (๐ โ (๐ถ /su ๐ท) โ No ) |
9 | 1, 2, 5, 8 | muls4d 28023 | . . . 4 โข (๐ โ ((๐ต ยทs ๐ท) ยทs ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท))) = ((๐ต ยทs (๐ด /su ๐ต)) ยทs (๐ท ยทs (๐ถ /su ๐ท)))) |
10 | 3, 1, 4 | divscan2d 28078 | . . . . 5 โข (๐ โ (๐ต ยทs (๐ด /su ๐ต)) = ๐ด) |
11 | 6, 2, 7 | divscan2d 28078 | . . . . 5 โข (๐ โ (๐ท ยทs (๐ถ /su ๐ท)) = ๐ถ) |
12 | 10, 11 | oveq12d 7423 | . . . 4 โข (๐ โ ((๐ต ยทs (๐ด /su ๐ต)) ยทs (๐ท ยทs (๐ถ /su ๐ท))) = (๐ด ยทs ๐ถ)) |
13 | 9, 12 | eqtrd 2766 | . . 3 โข (๐ โ ((๐ต ยทs ๐ท) ยทs ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท))) = (๐ด ยทs ๐ถ)) |
14 | 3, 6 | mulscld 27990 | . . . 4 โข (๐ โ (๐ด ยทs ๐ถ) โ No ) |
15 | 5, 8 | mulscld 27990 | . . . 4 โข (๐ โ ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท)) โ No ) |
16 | 1, 2 | mulscld 27990 | . . . 4 โข (๐ โ (๐ต ยทs ๐ท) โ No ) |
17 | 1, 2 | mulsne0bd 28041 | . . . . 5 โข (๐ โ ((๐ต ยทs ๐ท) โ 0s โ (๐ต โ 0s โง ๐ท โ 0s ))) |
18 | 4, 7, 17 | mpbir2and 710 | . . . 4 โข (๐ โ (๐ต ยทs ๐ท) โ 0s ) |
19 | 14, 15, 16, 18 | divsmuld 28075 | . . 3 โข (๐ โ (((๐ด ยทs ๐ถ) /su (๐ต ยทs ๐ท)) = ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท)) โ ((๐ต ยทs ๐ท) ยทs ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท))) = (๐ด ยทs ๐ถ))) |
20 | 13, 19 | mpbird 257 | . 2 โข (๐ โ ((๐ด ยทs ๐ถ) /su (๐ต ยทs ๐ท)) = ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท))) |
21 | 20 | eqcomd 2732 | 1 โข (๐ โ ((๐ด /su ๐ต) ยทs (๐ถ /su ๐ท)) = ((๐ด ยทs ๐ถ) /su (๐ต ยทs ๐ท))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 โ wne 2934 (class class class)co 7405 No csur 27528 0s c0s 27710 ยทs cmuls 27961 /su cdivs 28042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-dc 10443 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-nadd 8667 df-no 27531 df-slt 27532 df-bday 27533 df-sle 27633 df-sslt 27669 df-scut 27671 df-0s 27712 df-1s 27713 df-made 27729 df-old 27730 df-left 27732 df-right 27733 df-norec 27810 df-norec2 27821 df-adds 27832 df-negs 27889 df-subs 27890 df-muls 27962 df-divs 28043 |
This theorem is referenced by: remulscllem1 28183 |
Copyright terms: Public domain | W3C validator |