| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulscld | Structured version Visualization version GIF version | ||
| Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| mulscld | ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | mulscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | mulscl 28071 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 No csur 27576 ·s cmuls 28043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-subs 27962 df-muls 28044 |
| This theorem is referenced by: slemuld 28075 mulscom 28076 mulsge0d 28083 ssltmul1 28084 ssltmul2 28085 mulsuniflem 28086 addsdilem3 28090 addsdilem4 28091 subsdid 28095 mulnegs1d 28097 mul2negsd 28099 mulsasslem3 28102 muls4d 28105 mulsunif2lem 28106 sltmul2 28108 slemul2d 28111 slemul1d 28112 sltmulneg1d 28113 mulscan2dlem 28115 mulscan2d 28116 sltmul12ad 28120 norecdiv 28127 divsasswd 28140 precsexlem8 28150 precsexlem9 28151 precsexlem10 28152 precsexlem11 28153 divmuldivsd 28168 divdivs1d 28169 divsrecd 28170 divscan3d 28172 onmulscl 28209 eucliddivs 28299 n0seo 28342 zseo 28343 pw2recs 28359 pw2divscan3d 28362 pw2divscan4d 28365 pw2divsrecd 28368 halfcut 28376 addhalfcut 28377 zs12addscl 28385 zs12zodd 28390 zs12ge0 28391 zs12bday 28392 |
| Copyright terms: Public domain | W3C validator |