| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulscld | Structured version Visualization version GIF version | ||
| Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| mulscld | ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | mulscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | mulscl 28094 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7410 No csur 27608 ·s cmuls 28066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-nadd 8683 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-made 27812 df-old 27813 df-left 27815 df-right 27816 df-norec 27902 df-norec2 27913 df-adds 27924 df-negs 27984 df-subs 27985 df-muls 28067 |
| This theorem is referenced by: slemuld 28098 mulscom 28099 mulsge0d 28106 ssltmul1 28107 ssltmul2 28108 mulsuniflem 28109 addsdilem3 28113 addsdilem4 28114 subsdid 28118 mulnegs1d 28120 mul2negsd 28122 mulsasslem3 28125 muls4d 28128 mulsunif2lem 28129 sltmul2 28131 slemul2d 28134 slemul1d 28135 sltmulneg1d 28136 mulscan2dlem 28138 mulscan2d 28139 sltmul12ad 28143 norecdiv 28150 divsasswd 28163 precsexlem8 28173 precsexlem9 28174 precsexlem10 28175 precsexlem11 28176 divmuldivsd 28191 divdivs1d 28192 divsrecd 28193 divscan3d 28195 onmulscl 28232 eucliddivs 28322 n0seo 28364 zseo 28365 pw2recs 28380 pw2divscan3d 28383 pw2divsrecd 28387 halfcut 28390 addhalfcut 28391 zs12ge0 28399 zs12bday 28400 |
| Copyright terms: Public domain | W3C validator |