MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscld Structured version   Visualization version   GIF version

Theorem mulscld 28179
Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
mulscld.1 (𝜑𝐴 No )
mulscld.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscld (𝜑 → (𝐴 ·s 𝐵) ∈ No )

Proof of Theorem mulscld
StepHypRef Expression
1 mulscld.1 . 2 (𝜑𝐴 No )
2 mulscld.2 . 2 (𝜑𝐵 No )
3 mulscl 28178 . 2 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  (class class class)co 7448   No csur 27702   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151
This theorem is referenced by:  slemuld  28182  mulscom  28183  mulsge0d  28190  ssltmul1  28191  ssltmul2  28192  mulsuniflem  28193  addsdilem3  28197  addsdilem4  28198  subsdid  28202  mulnegs1d  28204  mul2negsd  28206  mulsasslem3  28209  muls4d  28212  mulsunif2lem  28213  sltmul2  28215  slemul2d  28218  slemul1d  28219  sltmulneg1d  28220  mulscan2dlem  28222  mulscan2d  28223  sltmul12ad  28227  norecdiv  28234  divsasswd  28246  precsexlem8  28256  precsexlem9  28257  precsexlem10  28258  precsexlem11  28259  divmuldivsd  28274  divdivs1d  28275  divsrecd  28276  divscan3d  28278  onmulscl  28305  n0seo  28423  zseo  28424  expscl  28431  halfcut  28434  addhalfcut  28437  zs12bday  28442
  Copyright terms: Public domain W3C validator