| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulscld | Structured version Visualization version GIF version | ||
| Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| mulscld | ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | mulscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | mulscl 28037 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 No csur 27551 ·s cmuls 28009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 df-muls 28010 |
| This theorem is referenced by: slemuld 28041 mulscom 28042 mulsge0d 28049 ssltmul1 28050 ssltmul2 28051 mulsuniflem 28052 addsdilem3 28056 addsdilem4 28057 subsdid 28061 mulnegs1d 28063 mul2negsd 28065 mulsasslem3 28068 muls4d 28071 mulsunif2lem 28072 sltmul2 28074 slemul2d 28077 slemul1d 28078 sltmulneg1d 28079 mulscan2dlem 28081 mulscan2d 28082 sltmul12ad 28086 norecdiv 28093 divsasswd 28106 precsexlem8 28116 precsexlem9 28117 precsexlem10 28118 precsexlem11 28119 divmuldivsd 28134 divdivs1d 28135 divsrecd 28136 divscan3d 28138 onmulscl 28175 eucliddivs 28265 n0seo 28307 zseo 28308 pw2recs 28323 pw2divscan3d 28326 pw2divsrecd 28330 halfcut 28333 addhalfcut 28334 zs12ge0 28342 zs12bday 28343 |
| Copyright terms: Public domain | W3C validator |