MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscld Structured version   Visualization version   GIF version

Theorem mulscld 28072
Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
mulscld.1 (𝜑𝐴 No )
mulscld.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscld (𝜑 → (𝐴 ·s 𝐵) ∈ No )

Proof of Theorem mulscld
StepHypRef Expression
1 mulscld.1 . 2 (𝜑𝐴 No )
2 mulscld.2 . 2 (𝜑𝐵 No )
3 mulscl 28071 . 2 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  (class class class)co 7346   No csur 27576   ·s cmuls 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-muls 28044
This theorem is referenced by:  slemuld  28075  mulscom  28076  mulsge0d  28083  ssltmul1  28084  ssltmul2  28085  mulsuniflem  28086  addsdilem3  28090  addsdilem4  28091  subsdid  28095  mulnegs1d  28097  mul2negsd  28099  mulsasslem3  28102  muls4d  28105  mulsunif2lem  28106  sltmul2  28108  slemul2d  28111  slemul1d  28112  sltmulneg1d  28113  mulscan2dlem  28115  mulscan2d  28116  sltmul12ad  28120  norecdiv  28127  divsasswd  28140  precsexlem8  28150  precsexlem9  28151  precsexlem10  28152  precsexlem11  28153  divmuldivsd  28168  divdivs1d  28169  divsrecd  28170  divscan3d  28172  onmulscl  28209  eucliddivs  28299  n0seo  28342  zseo  28343  pw2recs  28359  pw2divscan3d  28362  pw2divscan4d  28365  pw2divsrecd  28368  halfcut  28376  addhalfcut  28377  zs12addscl  28385  zs12zodd  28390  zs12ge0  28391  zs12bday  28392
  Copyright terms: Public domain W3C validator