| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulscld | Structured version Visualization version GIF version | ||
| Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| mulscld | ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | mulscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | mulscl 28044 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 No csur 27558 ·s cmuls 28016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-muls 28017 |
| This theorem is referenced by: slemuld 28048 mulscom 28049 mulsge0d 28056 ssltmul1 28057 ssltmul2 28058 mulsuniflem 28059 addsdilem3 28063 addsdilem4 28064 subsdid 28068 mulnegs1d 28070 mul2negsd 28072 mulsasslem3 28075 muls4d 28078 mulsunif2lem 28079 sltmul2 28081 slemul2d 28084 slemul1d 28085 sltmulneg1d 28086 mulscan2dlem 28088 mulscan2d 28089 sltmul12ad 28093 norecdiv 28100 divsasswd 28113 precsexlem8 28123 precsexlem9 28124 precsexlem10 28125 precsexlem11 28126 divmuldivsd 28141 divdivs1d 28142 divsrecd 28143 divscan3d 28145 onmulscl 28182 eucliddivs 28272 n0seo 28314 zseo 28315 pw2recs 28330 pw2divscan3d 28333 pw2divsrecd 28337 halfcut 28340 addhalfcut 28341 zs12ge0 28349 zs12bday 28350 |
| Copyright terms: Public domain | W3C validator |