![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulscld | Structured version Visualization version GIF version |
Description: The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
Ref | Expression |
---|---|
mulscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
mulscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
Ref | Expression |
---|---|
mulscld | ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | mulscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
3 | mulscl 28178 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 No csur 27702 ·s cmuls 28150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-subs 28072 df-muls 28151 |
This theorem is referenced by: slemuld 28182 mulscom 28183 mulsge0d 28190 ssltmul1 28191 ssltmul2 28192 mulsuniflem 28193 addsdilem3 28197 addsdilem4 28198 subsdid 28202 mulnegs1d 28204 mul2negsd 28206 mulsasslem3 28209 muls4d 28212 mulsunif2lem 28213 sltmul2 28215 slemul2d 28218 slemul1d 28219 sltmulneg1d 28220 mulscan2dlem 28222 mulscan2d 28223 sltmul12ad 28227 norecdiv 28234 divsasswd 28246 precsexlem8 28256 precsexlem9 28257 precsexlem10 28258 precsexlem11 28259 divmuldivsd 28274 divdivs1d 28275 divsrecd 28276 divscan3d 28278 onmulscl 28305 n0seo 28423 zseo 28424 expscl 28431 halfcut 28434 addhalfcut 28437 zs12bday 28442 |
Copyright terms: Public domain | W3C validator |