MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem11 Structured version   Visualization version   GIF version

Theorem mulsproplem11 27942
Description: Lemma for surreal multiplication. Under the inductive hypothesis, demonstrate closure of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
mulsproplem9.1 (๐œ‘ โ†’ ๐ด โˆˆ No )
mulsproplem9.2 (๐œ‘ โ†’ ๐ต โˆˆ No )
Assertion
Ref Expression
mulsproplem11 (๐œ‘ โ†’ (๐ด ยทs ๐ต) โˆˆ No )
Distinct variable groups:   ๐ด,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ต,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ถ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ท,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ธ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐น,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“
Allowed substitution hints:   ๐œ‘(๐‘’,๐‘“,๐‘Ž,๐‘,๐‘,๐‘‘)

Proof of Theorem mulsproplem11
Dummy variables ๐‘” โ„Ž ๐‘– ๐‘— ๐‘ ๐‘ž ๐‘Ÿ ๐‘  ๐‘ก ๐‘ข ๐‘ฃ ๐‘ค are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulsproplem.1 . . 3 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
2 mulsproplem9.1 . . 3 (๐œ‘ โ†’ ๐ด โˆˆ No )
3 mulsproplem9.2 . . 3 (๐œ‘ โ†’ ๐ต โˆˆ No )
41, 2, 3mulsproplem10 27941 . 2 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
54simp1d 1139 1 (๐œ‘ โ†’ (๐ด ยทs ๐ต) โˆˆ No )
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  {cab 2701  โˆ€wral 3053  โˆƒwrex 3062   โˆช cun 3938  {csn 4620   class class class wbr 5138  โ€˜cfv 6533  (class class class)co 7401   +no cnadd 8660   No csur 27489   <s cslt 27490   bday cbday 27491   <<s csslt 27629   L cleft 27688   R cright 27689   +s cadds 27792   -s csubs 27849   ยทs cmuls 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-ot 4629  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-2o 8462  df-nadd 8661  df-no 27492  df-slt 27493  df-bday 27494  df-sle 27594  df-sslt 27630  df-scut 27632  df-0s 27673  df-made 27690  df-old 27691  df-left 27693  df-right 27694  df-norec 27771  df-norec2 27782  df-adds 27793  df-negs 27850  df-subs 27851  df-muls 27923
This theorem is referenced by:  mulsproplem13  27944  mulsproplem14  27945  mulsprop  27946
  Copyright terms: Public domain W3C validator