| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsproplem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal multiplication. Under the inductive hypothesis, demonstrate closure of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsproplem.1 | ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| mulsproplem9.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulsproplem9.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| mulsproplem11 | ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulsproplem.1 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | |
| 2 | mulsproplem9.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | mulsproplem9.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 4 | 1, 2, 3 | mulsproplem10 28057 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| 5 | 4 | simp1d 1142 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cab 2708 ∀wral 3045 ∃wrex 3054 ∪ cun 3898 {csn 4574 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 +no cnadd 8575 No csur 27571 <s cslt 27572 bday cbday 27573 <<s csslt 27713 L cleft 27779 R cright 27780 +s cadds 27895 -s csubs 27955 ·s cmuls 28038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27574 df-slt 27575 df-bday 27576 df-sle 27677 df-sslt 27714 df-scut 27716 df-0s 27761 df-made 27781 df-old 27782 df-left 27784 df-right 27785 df-norec 27874 df-norec2 27885 df-adds 27896 df-negs 27956 df-subs 27957 df-muls 28039 |
| This theorem is referenced by: mulsproplem13 28060 mulsproplem14 28061 mulsprop 28062 |
| Copyright terms: Public domain | W3C validator |