Step | Hyp | Ref
| Expression |
1 | | mulsproplem.1 |
. . . 4
โข (๐ โ โ๐ โ No
โ๐ โ No โ๐ โ No
โ๐ โ No โ๐ โ No
โ๐ โ No (((( bday โ๐) +no (
bday โ๐))
โช (((( bday โ๐) +no ( bday
โ๐)) โช
(( bday โ๐) +no ( bday
โ๐))) โช
((( bday โ๐) +no ( bday
โ๐)) โช
(( bday โ๐) +no ( bday
โ๐))))) โ
((( bday โ๐ด) +no ( bday
โ๐ต)) โช
(((( bday โ๐ถ) +no ( bday
โ๐ธ)) โช
(( bday โ๐ท) +no ( bday
โ๐น))) โช
((( bday โ๐ถ) +no ( bday
โ๐น)) โช
(( bday โ๐ท) +no ( bday
โ๐ธ))))) โ
((๐ ยทs
๐) โ No โง ((๐ <s ๐ โง ๐ <s ๐) โ ((๐ ยทs ๐) -s (๐ ยทs ๐)) <s ((๐ ยทs ๐) -s (๐ ยทs ๐)))))) |
2 | | mulsproplem9.1 |
. . . 4
โข (๐ โ ๐ด โ No
) |
3 | | mulsproplem9.2 |
. . . 4
โข (๐ โ ๐ต โ No
) |
4 | 1, 2, 3 | mulsproplem9 27569 |
. . 3
โข (๐ โ ({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})) |
5 | | scutcut 27291 |
. . 3
โข (({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}) โ ((({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})) โ No
โง ({๐ โฃ
โ๐ โ ( L
โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} โง {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))) |
6 | 4, 5 | syl 17 |
. 2
โข (๐ โ ((({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})) โ No
โง ({๐ โฃ
โ๐ โ ( L
โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} โง {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))) |
7 | | mulsval 27554 |
. . . . 5
โข ((๐ด โ
No โง ๐ต โ
No ) โ (๐ด ยทs ๐ต) = (({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))) |
8 | 2, 3, 7 | syl2anc 584 |
. . . 4
โข (๐ โ (๐ด ยทs ๐ต) = (({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))) |
9 | 8 | eleq1d 2818 |
. . 3
โข (๐ โ ((๐ด ยทs ๐ต) โ No
โ (({๐ โฃ
โ๐ โ ( L
โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})) โ No
)) |
10 | 8 | sneqd 4639 |
. . . 4
โข (๐ โ {(๐ด ยทs ๐ต)} = {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))}) |
11 | 10 | breq2d 5159 |
. . 3
โข (๐ โ (({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(๐ด ยทs ๐ต)} โ ({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))})) |
12 | 10 | breq1d 5157 |
. . 3
โข (๐ โ ({(๐ด ยทs ๐ต)} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}) โ {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))) |
13 | 9, 11, 12 | 3anbi123d 1436 |
. 2
โข (๐ โ (((๐ด ยทs ๐ต) โ No
โง ({๐ โฃ
โ๐ โ ( L
โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(๐ด ยทs ๐ต)} โง {(๐ด ยทs ๐ต)} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})) โ ((({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})) โ No
โง ({๐ โฃ
โ๐ โ ( L
โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} โง {(({๐ โฃ โ๐ โ ( L โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) |s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))})))) |
14 | 6, 13 | mpbird 256 |
1
โข (๐ โ ((๐ด ยทs ๐ต) โ No
โง ({๐ โฃ
โ๐ โ ( L
โ๐ด)โ๐ โ ( L โ๐ต)๐ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐)) -s (๐ ยทs ๐))} โช {โ โฃ โ๐ โ ( R โ๐ด)โ๐ โ ( R โ๐ต)โ = (((๐ ยทs ๐ต) +s (๐ด ยทs ๐ )) -s (๐ ยทs ๐ ))}) <<s {(๐ด ยทs ๐ต)} โง {(๐ด ยทs ๐ต)} <<s ({๐ โฃ โ๐ก โ ( L โ๐ด)โ๐ข โ ( R โ๐ต)๐ = (((๐ก ยทs ๐ต) +s (๐ด ยทs ๐ข)) -s (๐ก ยทs ๐ข))} โช {๐ โฃ โ๐ฃ โ ( R โ๐ด)โ๐ค โ ( L โ๐ต)๐ = (((๐ฃ ยทs ๐ต) +s (๐ด ยทs ๐ค)) -s (๐ฃ ยทs ๐ค))}))) |