MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem10 Structured version   Visualization version   GIF version

Theorem mulsproplem10 27570
Description: Lemma for surreal multiplication. State the cut properties of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
mulsproplem9.1 (๐œ‘ โ†’ ๐ด โˆˆ No )
mulsproplem9.2 (๐œ‘ โ†’ ๐ต โˆˆ No )
Assertion
Ref Expression
mulsproplem10 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
Distinct variable groups:   ๐ด,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ต,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ถ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ท,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ธ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐น,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ด,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘,๐‘ž,๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข,๐‘ฃ,๐‘ค,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ต,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘,๐‘ž,๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข,๐‘ฃ,๐‘ค   ๐œ‘,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘,๐‘ž,๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข,๐‘ฃ,๐‘ค
Allowed substitution hints:   ๐œ‘(๐‘’,๐‘“,๐‘Ž,๐‘,๐‘,๐‘‘)   ๐ถ(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)   ๐ท(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)   ๐ธ(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)   ๐น(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)

Proof of Theorem mulsproplem10
StepHypRef Expression
1 mulsproplem.1 . . . 4 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
2 mulsproplem9.1 . . . 4 (๐œ‘ โ†’ ๐ด โˆˆ No )
3 mulsproplem9.2 . . . 4 (๐œ‘ โ†’ ๐ต โˆˆ No )
41, 2, 3mulsproplem9 27569 . . 3 (๐œ‘ โ†’ ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))
5 scutcut 27291 . . 3 (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}) โ†’ ((({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} โˆง {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
64, 5syl 17 . 2 (๐œ‘ โ†’ ((({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} โˆง {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
7 mulsval 27554 . . . . 5 ((๐ด โˆˆ No โˆง ๐ต โˆˆ No ) โ†’ (๐ด ยทs ๐ต) = (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
82, 3, 7syl2anc 584 . . . 4 (๐œ‘ โ†’ (๐ด ยทs ๐ต) = (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
98eleq1d 2818 . . 3 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โ†” (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No ))
108sneqd 4639 . . . 4 (๐œ‘ โ†’ {(๐ด ยทs ๐ต)} = {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))})
1110breq2d 5159 . . 3 (๐œ‘ โ†’ (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โ†” ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))}))
1210breq1d 5157 . . 3 (๐œ‘ โ†’ ({(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}) โ†” {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
139, 11, 123anbi123d 1436 . 2 (๐œ‘ โ†’ (((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โ†” ((({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} โˆง {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))))
146, 13mpbird 256 1 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  {cab 2709  โˆ€wral 3061  โˆƒwrex 3070   โˆช cun 3945  {csn 4627   class class class wbr 5147  โ€˜cfv 6540  (class class class)co 7405   +no cnadd 8660   No csur 27132   <s cslt 27133   bday cbday 27134   <<s csslt 27271   |s cscut 27273   L cleft 27329   R cright 27330   +s cadds 27432   -s csubs 27484   ยทs cmuls 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-nadd 8661  df-no 27135  df-slt 27136  df-bday 27137  df-sle 27237  df-sslt 27272  df-scut 27274  df-0s 27314  df-made 27331  df-old 27332  df-left 27334  df-right 27335  df-norec 27411  df-norec2 27422  df-adds 27433  df-negs 27485  df-subs 27486  df-muls 27552
This theorem is referenced by:  mulsproplem11  27571  mulsproplem12  27572  mulscutlem  27576
  Copyright terms: Public domain W3C validator