MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem10 Structured version   Visualization version   GIF version

Theorem mulsproplem10 28012
Description: Lemma for surreal multiplication. State the cut properties of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
mulsproplem9.1 (๐œ‘ โ†’ ๐ด โˆˆ No )
mulsproplem9.2 (๐œ‘ โ†’ ๐ต โˆˆ No )
Assertion
Ref Expression
mulsproplem10 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
Distinct variable groups:   ๐ด,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ต,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ถ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ท,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ธ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐น,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ด,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘,๐‘ž,๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข,๐‘ฃ,๐‘ค,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ต,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘,๐‘ž,๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข,๐‘ฃ,๐‘ค   ๐œ‘,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘,๐‘ž,๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข,๐‘ฃ,๐‘ค
Allowed substitution hints:   ๐œ‘(๐‘’,๐‘“,๐‘Ž,๐‘,๐‘,๐‘‘)   ๐ถ(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)   ๐ท(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)   ๐ธ(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)   ๐น(๐‘ค,๐‘ฃ,๐‘ข,๐‘ก,๐‘”,โ„Ž,๐‘–,๐‘—,๐‘ ,๐‘Ÿ,๐‘ž,๐‘)

Proof of Theorem mulsproplem10
StepHypRef Expression
1 mulsproplem.1 . . . 4 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
2 mulsproplem9.1 . . . 4 (๐œ‘ โ†’ ๐ด โˆˆ No )
3 mulsproplem9.2 . . . 4 (๐œ‘ โ†’ ๐ต โˆˆ No )
41, 2, 3mulsproplem9 28011 . . 3 (๐œ‘ โ†’ ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))
5 scutcut 27721 . . 3 (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}) โ†’ ((({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} โˆง {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
64, 5syl 17 . 2 (๐œ‘ โ†’ ((({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} โˆง {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
7 mulsval 27996 . . . . 5 ((๐ด โˆˆ No โˆง ๐ต โˆˆ No ) โ†’ (๐ด ยทs ๐ต) = (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
82, 3, 7syl2anc 583 . . . 4 (๐œ‘ โ†’ (๐ด ยทs ๐ต) = (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
98eleq1d 2813 . . 3 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โ†” (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No ))
108sneqd 4636 . . . 4 (๐œ‘ โ†’ {(๐ด ยทs ๐ต)} = {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))})
1110breq2d 5154 . . 3 (๐œ‘ โ†’ (({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โ†” ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))}))
1210breq1d 5152 . . 3 (๐œ‘ โ†’ ({(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}) โ†” {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
139, 11, 123anbi123d 1433 . 2 (๐œ‘ โ†’ (((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โ†” ((({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} โˆง {(({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) |s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))}))))
146, 13mpbird 257 1 (๐œ‘ โ†’ ((๐ด ยทs ๐ต) โˆˆ No โˆง ({๐‘” โˆฃ โˆƒ๐‘ โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ž โˆˆ ( L โ€˜๐ต)๐‘” = (((๐‘ ยทs ๐ต) +s (๐ด ยทs ๐‘ž)) -s (๐‘ ยทs ๐‘ž))} โˆช {โ„Ž โˆฃ โˆƒ๐‘Ÿ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘  โˆˆ ( R โ€˜๐ต)โ„Ž = (((๐‘Ÿ ยทs ๐ต) +s (๐ด ยทs ๐‘ )) -s (๐‘Ÿ ยทs ๐‘ ))}) <<s {(๐ด ยทs ๐ต)} โˆง {(๐ด ยทs ๐ต)} <<s ({๐‘– โˆฃ โˆƒ๐‘ก โˆˆ ( L โ€˜๐ด)โˆƒ๐‘ข โˆˆ ( R โ€˜๐ต)๐‘– = (((๐‘ก ยทs ๐ต) +s (๐ด ยทs ๐‘ข)) -s (๐‘ก ยทs ๐‘ข))} โˆช {๐‘— โˆฃ โˆƒ๐‘ฃ โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ค โˆˆ ( L โ€˜๐ต)๐‘— = (((๐‘ฃ ยทs ๐ต) +s (๐ด ยทs ๐‘ค)) -s (๐‘ฃ ยทs ๐‘ค))})))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099  {cab 2704  โˆ€wral 3056  โˆƒwrex 3065   โˆช cun 3942  {csn 4624   class class class wbr 5142  โ€˜cfv 6542  (class class class)co 7414   +no cnadd 8679   No csur 27560   <s cslt 27561   bday cbday 27562   <<s csslt 27700   |s cscut 27702   L cleft 27759   R cright 27760   +s cadds 27863   -s csubs 27920   ยทs cmuls 27993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-nadd 8680  df-no 27563  df-slt 27564  df-bday 27565  df-sle 27665  df-sslt 27701  df-scut 27703  df-0s 27744  df-made 27761  df-old 27762  df-left 27764  df-right 27765  df-norec 27842  df-norec2 27853  df-adds 27864  df-negs 27921  df-subs 27922  df-muls 27994
This theorem is referenced by:  mulsproplem11  28013  mulsproplem12  28014  mulscutlem  28018
  Copyright terms: Public domain W3C validator