![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddcnfid2 | Structured version Visualization version GIF version |
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
Ref | Expression |
---|---|
naddcnfid2 | ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7918 | . . . . . 6 ⊢ ∅ ∈ ω | |
2 | fconst6g 6805 | . . . . . 6 ⊢ (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω) | |
3 | 1, 2 | mp1i 13 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
4 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) | |
5 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω) |
6 | 4, 5 | fczfsuppd 9433 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅) |
7 | simpr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) | |
8 | 7 | eleq2d 2827 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋))) |
9 | eqid 2737 | . . . . . . 7 ⊢ dom (ω CNF 𝑋) = dom (ω CNF 𝑋) | |
10 | omelon 9693 | . . . . . . . 8 ⊢ ω ∈ On | |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On) |
12 | 9, 11, 4 | cantnfs 9713 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
13 | 8, 12 | bitrd 279 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
14 | 3, 6, 13 | mpbir2and 713 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
15 | naddcnfcom 43372 | . . . . 5 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆)) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) | |
16 | 15 | ex 412 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
17 | 14, 16 | mpand 695 | . . 3 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
18 | 17 | imp 406 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) |
19 | naddcnfid1 43373 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | |
20 | 18, 19 | eqtrd 2777 | 1 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4342 {csn 4634 class class class wbr 5151 × cxp 5691 dom cdm 5693 Oncon0 6392 ⟶wf 6565 (class class class)co 7438 ∘f cof 7702 ωcom 7894 +o coa 8511 finSupp cfsupp 9408 CNF ccnf 9708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-seqom 8496 df-oadd 8518 df-map 8876 df-en 8994 df-fin 8997 df-fsupp 9409 df-cnf 9709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |