![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddcnfid2 | Structured version Visualization version GIF version |
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
Ref | Expression |
---|---|
naddcnfid2 | ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7891 | . . . . . 6 ⊢ ∅ ∈ ω | |
2 | fconst6g 6780 | . . . . . 6 ⊢ (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω) | |
3 | 1, 2 | mp1i 13 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
4 | simpl 481 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) | |
5 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω) |
6 | 4, 5 | fczfsuppd 9407 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅) |
7 | simpr 483 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) | |
8 | 7 | eleq2d 2811 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋))) |
9 | eqid 2725 | . . . . . . 7 ⊢ dom (ω CNF 𝑋) = dom (ω CNF 𝑋) | |
10 | omelon 9667 | . . . . . . . 8 ⊢ ω ∈ On | |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On) |
12 | 9, 11, 4 | cantnfs 9687 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
13 | 8, 12 | bitrd 278 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
14 | 3, 6, 13 | mpbir2and 711 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
15 | naddcnfcom 42859 | . . . . 5 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆)) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) | |
16 | 15 | ex 411 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
17 | 14, 16 | mpand 693 | . . 3 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
18 | 17 | imp 405 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) |
19 | naddcnfid1 42860 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | |
20 | 18, 19 | eqtrd 2765 | 1 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∅c0 4318 {csn 4624 class class class wbr 5143 × cxp 5670 dom cdm 5672 Oncon0 6364 ⟶wf 6538 (class class class)co 7415 ∘f cof 7679 ωcom 7867 +o coa 8480 finSupp cfsupp 9383 CNF ccnf 9682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-seqom 8465 df-oadd 8487 df-map 8843 df-en 8961 df-fin 8964 df-fsupp 9384 df-cnf 9683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |