| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naddcnfid2 | Structured version Visualization version GIF version | ||
| Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
| Ref | Expression |
|---|---|
| naddcnfid2 | ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7873 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 2 | fconst6g 6756 | . . . . . 6 ⊢ (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω) | |
| 3 | 1, 2 | mp1i 13 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) | |
| 5 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω) |
| 6 | 4, 5 | fczfsuppd 9355 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅) |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) | |
| 8 | 7 | eleq2d 2815 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋))) |
| 9 | eqid 2730 | . . . . . . 7 ⊢ dom (ω CNF 𝑋) = dom (ω CNF 𝑋) | |
| 10 | omelon 9617 | . . . . . . . 8 ⊢ ω ∈ On | |
| 11 | 10 | a1i 11 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On) |
| 12 | 9, 11, 4 | cantnfs 9637 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
| 13 | 8, 12 | bitrd 279 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
| 14 | 3, 6, 13 | mpbir2and 713 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
| 15 | naddcnfcom 43327 | . . . . 5 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆)) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) | |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
| 17 | 14, 16 | mpand 695 | . . 3 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
| 18 | 17 | imp 406 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) |
| 19 | naddcnfid1 43328 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | |
| 20 | 18, 19 | eqtrd 2765 | 1 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4304 {csn 4597 class class class wbr 5115 × cxp 5644 dom cdm 5646 Oncon0 6340 ⟶wf 6515 (class class class)co 7394 ∘f cof 7658 ωcom 7850 +o coa 8440 finSupp cfsupp 9330 CNF ccnf 9632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-seqom 8425 df-oadd 8447 df-map 8805 df-en 8923 df-fin 8926 df-fsupp 9331 df-cnf 9633 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |