Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddcnfid2 | Structured version Visualization version GIF version |
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
Ref | Expression |
---|---|
naddcnfid2 | ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7767 | . . . . . 6 ⊢ ∅ ∈ ω | |
2 | fconst6g 6693 | . . . . . 6 ⊢ (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω) | |
3 | 1, 2 | mp1i 13 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
4 | simpl 484 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) | |
5 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω) |
6 | 4, 5 | fczfsuppd 9198 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅) |
7 | simpr 486 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) | |
8 | 7 | eleq2d 2822 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋))) |
9 | eqid 2736 | . . . . . . 7 ⊢ dom (ω CNF 𝑋) = dom (ω CNF 𝑋) | |
10 | omelon 9456 | . . . . . . . 8 ⊢ ω ∈ On | |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On) |
12 | 9, 11, 4 | cantnfs 9476 | . . . . . 6 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
13 | 8, 12 | bitrd 279 | . . . . 5 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅))) |
14 | 3, 6, 13 | mpbir2and 711 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
15 | naddcnfcom 41266 | . . . . 5 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆)) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) | |
16 | 15 | ex 414 | . . . 4 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (((𝑋 × {∅}) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
17 | 14, 16 | mpand 693 | . . 3 ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅})))) |
18 | 17 | imp 408 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹 ∘f +o (𝑋 × {∅}))) |
19 | naddcnfid1 41267 | . 2 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | |
20 | 18, 19 | eqtrd 2776 | 1 ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∅c0 4262 {csn 4565 class class class wbr 5081 × cxp 5598 dom cdm 5600 Oncon0 6281 ⟶wf 6454 (class class class)co 7307 ∘f cof 7563 ωcom 7744 +o coa 8325 finSupp cfsupp 9180 CNF ccnf 9471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9451 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3340 df-rab 3341 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-seqom 8310 df-oadd 8332 df-map 8648 df-en 8765 df-fin 8768 df-fsupp 9181 df-cnf 9472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |