Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfid2 Structured version   Visualization version   GIF version

Theorem naddcnfid2 43329
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfid2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹)

Proof of Theorem naddcnfid2
StepHypRef Expression
1 peano1 7873 . . . . . 6 ∅ ∈ ω
2 fconst6g 6756 . . . . . 6 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
31, 2mp1i 13 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
4 simpl 482 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
51a1i 11 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
64, 5fczfsuppd 9355 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
7 simpr 484 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
87eleq2d 2815 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
9 eqid 2730 . . . . . . 7 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
10 omelon 9617 . . . . . . . 8 ω ∈ On
1110a1i 11 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
129, 11, 4cantnfs 9637 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
138, 12bitrd 279 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
143, 6, 13mpbir2and 713 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
15 naddcnfcom 43327 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑋 × {∅}) ∈ 𝑆𝐹𝑆)) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹f +o (𝑋 × {∅})))
1615ex 412 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (((𝑋 × {∅}) ∈ 𝑆𝐹𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹f +o (𝑋 × {∅}))))
1714, 16mpand 695 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹f +o (𝑋 × {∅}))))
1817imp 406 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = (𝐹f +o (𝑋 × {∅})))
19 naddcnfid1 43328 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
2018, 19eqtrd 2765 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4304  {csn 4597   class class class wbr 5115   × cxp 5644  dom cdm 5646  Oncon0 6340  wf 6515  (class class class)co 7394  f cof 7658  ωcom 7850   +o coa 8440   finSupp cfsupp 9330   CNF ccnf 9632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-seqom 8425  df-oadd 8447  df-map 8805  df-en 8923  df-fin 8926  df-fsupp 9331  df-cnf 9633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator