MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsup0 Structured version   Visualization version   GIF version

Theorem xrsup0 13362
Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrsup0 sup(∅, ℝ*, < ) = -∞

Proof of Theorem xrsup0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4406 . 2 ∅ ⊆ ℝ*
2 mnfxr 11316 . 2 -∞ ∈ ℝ*
3 ral0 4519 . 2 𝑦 ∈ ∅ ¬ -∞ < 𝑦
4 rexr 11305 . . . . 5 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5 nltmnf 13169 . . . . 5 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
64, 5syl 17 . . . 4 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
76pm2.21d 121 . . 3 (𝑦 ∈ ℝ → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
87rgen 3061 . 2 𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
9 supxr 13352 . 2 (((∅ ⊆ ℝ* ∧ -∞ ∈ ℝ*) ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → sup(∅, ℝ*, < ) = -∞)
101, 2, 3, 8, 9mp4an 693 1 sup(∅, ℝ*, < ) = -∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  c0 4339   class class class wbr 5148  supcsup 9478  cr 11152  -∞cmnf 11291  *cxr 11292   < clt 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493
This theorem is referenced by:  mdegcl  26123  mdeg0  26124  suplesup  45289  supxrltinfxr  45399  supminfxr  45414  limsup0  45650
  Copyright terms: Public domain W3C validator