| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsup0 | Structured version Visualization version GIF version | ||
| Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrsup0 | ⊢ sup(∅, ℝ*, < ) = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . 2 ⊢ ∅ ⊆ ℝ* | |
| 2 | mnfxr 11231 | . 2 ⊢ -∞ ∈ ℝ* | |
| 3 | ral0 4476 | . 2 ⊢ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 | |
| 4 | rexr 11220 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
| 5 | nltmnf 13089 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
| 7 | 6 | pm2.21d 121 | . . 3 ⊢ (𝑦 ∈ ℝ → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) |
| 8 | 7 | rgen 3046 | . 2 ⊢ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) |
| 9 | supxr 13273 | . 2 ⊢ (((∅ ⊆ ℝ* ∧ -∞ ∈ ℝ*) ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → sup(∅, ℝ*, < ) = -∞) | |
| 10 | 1, 2, 3, 8, 9 | mp4an 693 | 1 ⊢ sup(∅, ℝ*, < ) = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 supcsup 9391 ℝcr 11067 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: mdegcl 25974 mdeg0 25975 suplesup 45335 supxrltinfxr 45445 supminfxr 45460 limsup0 45692 |
| Copyright terms: Public domain | W3C validator |