| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsup0 | Structured version Visualization version GIF version | ||
| Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrsup0 | ⊢ sup(∅, ℝ*, < ) = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4351 | . 2 ⊢ ∅ ⊆ ℝ* | |
| 2 | mnfxr 11172 | . 2 ⊢ -∞ ∈ ℝ* | |
| 3 | ral0 4464 | . 2 ⊢ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 | |
| 4 | rexr 11161 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
| 5 | nltmnf 13031 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
| 7 | 6 | pm2.21d 121 | . . 3 ⊢ (𝑦 ∈ ℝ → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) |
| 8 | 7 | rgen 3046 | . 2 ⊢ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) |
| 9 | supxr 13215 | . 2 ⊢ (((∅ ⊆ ℝ* ∧ -∞ ∈ ℝ*) ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → sup(∅, ℝ*, < ) = -∞) | |
| 10 | 1, 2, 3, 8, 9 | mp4an 693 | 1 ⊢ sup(∅, ℝ*, < ) = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 supcsup 9330 ℝcr 11008 -∞cmnf 11147 ℝ*cxr 11148 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: mdegcl 25972 mdeg0 25973 suplesup 45319 supxrltinfxr 45428 supminfxr 45443 limsup0 45675 |
| Copyright terms: Public domain | W3C validator |