MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnns2 Structured version   Visualization version   GIF version

Theorem dfnns2 28284
Description: Alternate definition of the positive surreal integers. Compare df-nn 12147. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
dfnns2 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)

Proof of Theorem dfnns2
Dummy variables 𝑖 𝑗 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnns 28255 . . . 4 (𝑖 ∈ ℕs ↔ (𝑖 ∈ ℕ0s𝑖 ≠ 0s ))
2 df-ne 2926 . . . . . . 7 (𝑖 ≠ 0s ↔ ¬ 𝑖 = 0s )
3 n0s0suc 28257 . . . . . . . 8 (𝑖 ∈ ℕ0s → (𝑖 = 0s ∨ ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
43ord 864 . . . . . . 7 (𝑖 ∈ ℕ0s → (¬ 𝑖 = 0s → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
52, 4biimtrid 242 . . . . . 6 (𝑖 ∈ ℕ0s → (𝑖 ≠ 0s → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
65imp 406 . . . . 5 ((𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s ))
7 oveq1 7360 . . . . . . . . . . . . 13 (𝑖 = 0s → (𝑖 +s 1s ) = ( 0s +s 1s ))
8 1sno 27759 . . . . . . . . . . . . . 14 1s No
9 addslid 27898 . . . . . . . . . . . . . 14 ( 1s No → ( 0s +s 1s ) = 1s )
108, 9ax-mp 5 . . . . . . . . . . . . 13 ( 0s +s 1s ) = 1s
117, 10eqtrdi 2780 . . . . . . . . . . . 12 (𝑖 = 0s → (𝑖 +s 1s ) = 1s )
1211eqeq2d 2740 . . . . . . . . . . 11 (𝑖 = 0s → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ))
1312rexbidv 3153 . . . . . . . . . 10 (𝑖 = 0s → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ))
14 oveq1 7360 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖 +s 1s ) = (𝑘 +s 1s ))
1514eqeq2d 2740 . . . . . . . . . . 11 (𝑖 = 𝑘 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s )))
1615rexbidv 3153 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s )))
17 oveq1 7360 . . . . . . . . . . . . 13 (𝑖 = (𝑘 +s 1s ) → (𝑖 +s 1s ) = ((𝑘 +s 1s ) +s 1s ))
1817eqeq2d 2740 . . . . . . . . . . . 12 (𝑖 = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s )))
1918rexbidv 3153 . . . . . . . . . . 11 (𝑖 = (𝑘 +s 1s ) → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s )))
20 fveqeq2 6835 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
2120cbvrexvw 3208 . . . . . . . . . . 11 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s ))
2219, 21bitrdi 287 . . . . . . . . . 10 (𝑖 = (𝑘 +s 1s ) → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
23 oveq1 7360 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 +s 1s ) = (𝑗 +s 1s ))
2423eqeq2d 2740 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
2524rexbidv 3153 . . . . . . . . . 10 (𝑖 = 𝑗 → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
26 peano1 7829 . . . . . . . . . . 11 ∅ ∈ ω
27 1nns 28264 . . . . . . . . . . . 12 1s ∈ ℕs
28 fr0g 8365 . . . . . . . . . . . 12 ( 1s ∈ ℕs → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s )
2927, 28ax-mp 5 . . . . . . . . . . 11 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s
30 fveqeq2 6835 . . . . . . . . . . . 12 (𝑦 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s ))
3130rspcev 3579 . . . . . . . . . . 11 ((∅ ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s ) → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s )
3226, 29, 31mp2an 692 . . . . . . . . . 10 𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s
33 fveqeq2 6835 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑦 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s )))
34 peano2 7830 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
35 ovex 7386 . . . . . . . . . . . . . . 15 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ∈ V
36 eqid 2729 . . . . . . . . . . . . . . . 16 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)
37 oveq1 7360 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s ))
38 oveq1 7360 . . . . . . . . . . . . . . . 16 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) → (𝑧 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
3936, 37, 38frsucmpt2 8369 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4035, 39mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4133, 34, 40rspcedvdw 3582 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4241adantl 481 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0s𝑦 ∈ ω) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
43 oveq1 7360 . . . . . . . . . . . . . 14 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) = ((𝑘 +s 1s ) +s 1s ))
4443eqeq2d 2740 . . . . . . . . . . . . 13 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4544rexbidv 3153 . . . . . . . . . . . 12 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4642, 45syl5ibcom 245 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4746rexlimdva 3130 . . . . . . . . . 10 (𝑘 ∈ ℕ0s → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4813, 16, 22, 25, 32, 47n0sind 28248 . . . . . . . . 9 (𝑗 ∈ ℕ0s → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s ))
49 frfnom 8364 . . . . . . . . . 10 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω
50 fvelrnb 6887 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω → ((𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
5149, 50ax-mp 5 . . . . . . . . 9 ((𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s ))
5248, 51sylibr 234 . . . . . . . 8 (𝑗 ∈ ℕ0s → (𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω))
53 df-ima 5636 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)
5452, 53eleqtrrdi 2839 . . . . . . 7 (𝑗 ∈ ℕ0s → (𝑗 +s 1s ) ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
55 eleq1 2816 . . . . . . 7 (𝑖 = (𝑗 +s 1s ) → (𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) ↔ (𝑗 +s 1s ) ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)))
5654, 55syl5ibrcom 247 . . . . . 6 (𝑗 ∈ ℕ0s → (𝑖 = (𝑗 +s 1s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)))
5756rexlimiv 3123 . . . . 5 (∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
586, 57syl 17 . . . 4 ((𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
591, 58sylbi 217 . . 3 (𝑖 ∈ ℕs𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6059ssriv 3941 . 2 s ⊆ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
61 fveq2 6826 . . . . . . 7 (𝑘 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅))
6261eleq1d 2813 . . . . . 6 (𝑘 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) ∈ ℕs))
63 fveq2 6826 . . . . . . 7 (𝑘 = 𝑗 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗))
6463eleq1d 2813 . . . . . 6 (𝑘 = 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs))
65 fveq2 6826 . . . . . . 7 (𝑘 = suc 𝑗 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗))
6665eleq1d 2813 . . . . . 6 (𝑘 = suc 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs))
67 fveq2 6826 . . . . . . 7 (𝑘 = 𝑖 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖))
6867eleq1d 2813 . . . . . 6 (𝑘 = 𝑖 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs))
6929, 27eqeltri 2824 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) ∈ ℕs
70 peano2nns 28265 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ ℕs)
71 ovex 7386 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ V
72 oveq1 7360 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 +s 1s ) = (𝑥 +s 1s ))
73 oveq1 7360 . . . . . . . . . 10 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7436, 72, 73frsucmpt2 8369 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7571, 74mpan2 691 . . . . . . . 8 (𝑗 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7675eleq1d 2813 . . . . . . 7 (𝑗 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ ℕs))
7770, 76imbitrrid 246 . . . . . 6 (𝑗 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs))
7862, 64, 66, 68, 69, 77finds 7836 . . . . 5 (𝑖 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs)
7978rgen 3046 . . . 4 𝑖 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs
80 fnfvrnss 7059 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω ∧ ∀𝑖 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs) → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ⊆ ℕs)
8149, 79, 80mp2an 692 . . 3 ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ⊆ ℕs
8253, 81eqsstri 3984 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) ⊆ ℕs
8360, 82eqssi 3954 1 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286  cmpt 5176  ran crn 5624  cres 5625  cima 5626  suc csuc 6313   Fn wfn 6481  cfv 6486  (class class class)co 7353  ωcom 7806  reccrdg 8338   No csur 27567   0s c0s 27754   1s c1s 27755   +s cadds 27889  0scnn0s 28229  scnns 28230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890  df-n0s 28231  df-nns 28232
This theorem is referenced by:  nnsind  28285  expsp1  28339
  Copyright terms: Public domain W3C validator