MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnns2 Structured version   Visualization version   GIF version

Theorem dfnns2 28268
Description: Alternate definition of the positive surreal integers. Compare df-nn 12194. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
dfnns2 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)

Proof of Theorem dfnns2
Dummy variables 𝑖 𝑗 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnns 28239 . . . 4 (𝑖 ∈ ℕs ↔ (𝑖 ∈ ℕ0s𝑖 ≠ 0s ))
2 df-ne 2927 . . . . . . 7 (𝑖 ≠ 0s ↔ ¬ 𝑖 = 0s )
3 n0s0suc 28241 . . . . . . . 8 (𝑖 ∈ ℕ0s → (𝑖 = 0s ∨ ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
43ord 864 . . . . . . 7 (𝑖 ∈ ℕ0s → (¬ 𝑖 = 0s → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
52, 4biimtrid 242 . . . . . 6 (𝑖 ∈ ℕ0s → (𝑖 ≠ 0s → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
65imp 406 . . . . 5 ((𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s ))
7 oveq1 7397 . . . . . . . . . . . . 13 (𝑖 = 0s → (𝑖 +s 1s ) = ( 0s +s 1s ))
8 1sno 27746 . . . . . . . . . . . . . 14 1s No
9 addslid 27882 . . . . . . . . . . . . . 14 ( 1s No → ( 0s +s 1s ) = 1s )
108, 9ax-mp 5 . . . . . . . . . . . . 13 ( 0s +s 1s ) = 1s
117, 10eqtrdi 2781 . . . . . . . . . . . 12 (𝑖 = 0s → (𝑖 +s 1s ) = 1s )
1211eqeq2d 2741 . . . . . . . . . . 11 (𝑖 = 0s → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ))
1312rexbidv 3158 . . . . . . . . . 10 (𝑖 = 0s → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ))
14 oveq1 7397 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖 +s 1s ) = (𝑘 +s 1s ))
1514eqeq2d 2741 . . . . . . . . . . 11 (𝑖 = 𝑘 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s )))
1615rexbidv 3158 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s )))
17 oveq1 7397 . . . . . . . . . . . . 13 (𝑖 = (𝑘 +s 1s ) → (𝑖 +s 1s ) = ((𝑘 +s 1s ) +s 1s ))
1817eqeq2d 2741 . . . . . . . . . . . 12 (𝑖 = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s )))
1918rexbidv 3158 . . . . . . . . . . 11 (𝑖 = (𝑘 +s 1s ) → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s )))
20 fveqeq2 6870 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
2120cbvrexvw 3217 . . . . . . . . . . 11 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s ))
2219, 21bitrdi 287 . . . . . . . . . 10 (𝑖 = (𝑘 +s 1s ) → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
23 oveq1 7397 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 +s 1s ) = (𝑗 +s 1s ))
2423eqeq2d 2741 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
2524rexbidv 3158 . . . . . . . . . 10 (𝑖 = 𝑗 → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
26 peano1 7868 . . . . . . . . . . 11 ∅ ∈ ω
27 1nns 28248 . . . . . . . . . . . 12 1s ∈ ℕs
28 fr0g 8407 . . . . . . . . . . . 12 ( 1s ∈ ℕs → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s )
2927, 28ax-mp 5 . . . . . . . . . . 11 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s
30 fveqeq2 6870 . . . . . . . . . . . 12 (𝑦 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s ))
3130rspcev 3591 . . . . . . . . . . 11 ((∅ ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s ) → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s )
3226, 29, 31mp2an 692 . . . . . . . . . 10 𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s
33 fveqeq2 6870 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑦 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s )))
34 peano2 7869 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
35 ovex 7423 . . . . . . . . . . . . . . 15 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ∈ V
36 eqid 2730 . . . . . . . . . . . . . . . 16 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)
37 oveq1 7397 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s ))
38 oveq1 7397 . . . . . . . . . . . . . . . 16 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) → (𝑧 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
3936, 37, 38frsucmpt2 8411 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4035, 39mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4133, 34, 40rspcedvdw 3594 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4241adantl 481 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0s𝑦 ∈ ω) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
43 oveq1 7397 . . . . . . . . . . . . . 14 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) = ((𝑘 +s 1s ) +s 1s ))
4443eqeq2d 2741 . . . . . . . . . . . . 13 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4544rexbidv 3158 . . . . . . . . . . . 12 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4642, 45syl5ibcom 245 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4746rexlimdva 3135 . . . . . . . . . 10 (𝑘 ∈ ℕ0s → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4813, 16, 22, 25, 32, 47n0sind 28232 . . . . . . . . 9 (𝑗 ∈ ℕ0s → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s ))
49 frfnom 8406 . . . . . . . . . 10 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω
50 fvelrnb 6924 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω → ((𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
5149, 50ax-mp 5 . . . . . . . . 9 ((𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s ))
5248, 51sylibr 234 . . . . . . . 8 (𝑗 ∈ ℕ0s → (𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω))
53 df-ima 5654 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)
5452, 53eleqtrrdi 2840 . . . . . . 7 (𝑗 ∈ ℕ0s → (𝑗 +s 1s ) ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
55 eleq1 2817 . . . . . . 7 (𝑖 = (𝑗 +s 1s ) → (𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) ↔ (𝑗 +s 1s ) ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)))
5654, 55syl5ibrcom 247 . . . . . 6 (𝑗 ∈ ℕ0s → (𝑖 = (𝑗 +s 1s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)))
5756rexlimiv 3128 . . . . 5 (∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
586, 57syl 17 . . . 4 ((𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
591, 58sylbi 217 . . 3 (𝑖 ∈ ℕs𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6059ssriv 3953 . 2 s ⊆ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
61 fveq2 6861 . . . . . . 7 (𝑘 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅))
6261eleq1d 2814 . . . . . 6 (𝑘 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) ∈ ℕs))
63 fveq2 6861 . . . . . . 7 (𝑘 = 𝑗 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗))
6463eleq1d 2814 . . . . . 6 (𝑘 = 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs))
65 fveq2 6861 . . . . . . 7 (𝑘 = suc 𝑗 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗))
6665eleq1d 2814 . . . . . 6 (𝑘 = suc 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs))
67 fveq2 6861 . . . . . . 7 (𝑘 = 𝑖 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖))
6867eleq1d 2814 . . . . . 6 (𝑘 = 𝑖 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs))
6929, 27eqeltri 2825 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) ∈ ℕs
70 peano2nns 28249 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ ℕs)
71 ovex 7423 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ V
72 oveq1 7397 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 +s 1s ) = (𝑥 +s 1s ))
73 oveq1 7397 . . . . . . . . . 10 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7436, 72, 73frsucmpt2 8411 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7571, 74mpan2 691 . . . . . . . 8 (𝑗 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7675eleq1d 2814 . . . . . . 7 (𝑗 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ ℕs))
7770, 76imbitrrid 246 . . . . . 6 (𝑗 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs))
7862, 64, 66, 68, 69, 77finds 7875 . . . . 5 (𝑖 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs)
7978rgen 3047 . . . 4 𝑖 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs
80 fnfvrnss 7096 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω ∧ ∀𝑖 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs) → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ⊆ ℕs)
8149, 79, 80mp2an 692 . . 3 ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ⊆ ℕs
8253, 81eqsstri 3996 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) ⊆ ℕs
8360, 82eqssi 3966 1 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  cmpt 5191  ran crn 5642  cres 5643  cima 5644  suc csuc 6337   Fn wfn 6509  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380   No csur 27558   0s c0s 27741   1s c1s 27742   +s cadds 27873  0scnn0s 28213  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874  df-n0s 28215  df-nns 28216
This theorem is referenced by:  nnsind  28269  expsp1  28322
  Copyright terms: Public domain W3C validator