MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnns2 Structured version   Visualization version   GIF version

Theorem dfnns2 28298
Description: Alternate definition of the positive surreal integers. Compare df-nn 12133. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
dfnns2 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)

Proof of Theorem dfnns2
Dummy variables 𝑖 𝑗 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnns 28269 . . . 4 (𝑖 ∈ ℕs ↔ (𝑖 ∈ ℕ0s𝑖 ≠ 0s ))
2 df-ne 2930 . . . . . . 7 (𝑖 ≠ 0s ↔ ¬ 𝑖 = 0s )
3 n0s0suc 28271 . . . . . . . 8 (𝑖 ∈ ℕ0s → (𝑖 = 0s ∨ ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
43ord 864 . . . . . . 7 (𝑖 ∈ ℕ0s → (¬ 𝑖 = 0s → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
52, 4biimtrid 242 . . . . . 6 (𝑖 ∈ ℕ0s → (𝑖 ≠ 0s → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s )))
65imp 406 . . . . 5 ((𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → ∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s ))
7 oveq1 7359 . . . . . . . . . . . . 13 (𝑖 = 0s → (𝑖 +s 1s ) = ( 0s +s 1s ))
8 1sno 27772 . . . . . . . . . . . . . 14 1s No
9 addslid 27912 . . . . . . . . . . . . . 14 ( 1s No → ( 0s +s 1s ) = 1s )
108, 9ax-mp 5 . . . . . . . . . . . . 13 ( 0s +s 1s ) = 1s
117, 10eqtrdi 2784 . . . . . . . . . . . 12 (𝑖 = 0s → (𝑖 +s 1s ) = 1s )
1211eqeq2d 2744 . . . . . . . . . . 11 (𝑖 = 0s → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ))
1312rexbidv 3157 . . . . . . . . . 10 (𝑖 = 0s → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ))
14 oveq1 7359 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖 +s 1s ) = (𝑘 +s 1s ))
1514eqeq2d 2744 . . . . . . . . . . 11 (𝑖 = 𝑘 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s )))
1615rexbidv 3157 . . . . . . . . . 10 (𝑖 = 𝑘 → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s )))
17 oveq1 7359 . . . . . . . . . . . . 13 (𝑖 = (𝑘 +s 1s ) → (𝑖 +s 1s ) = ((𝑘 +s 1s ) +s 1s ))
1817eqeq2d 2744 . . . . . . . . . . . 12 (𝑖 = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s )))
1918rexbidv 3157 . . . . . . . . . . 11 (𝑖 = (𝑘 +s 1s ) → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s )))
20 fveqeq2 6837 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
2120cbvrexvw 3212 . . . . . . . . . . 11 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = ((𝑘 +s 1s ) +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s ))
2219, 21bitrdi 287 . . . . . . . . . 10 (𝑖 = (𝑘 +s 1s ) → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
23 oveq1 7359 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 +s 1s ) = (𝑗 +s 1s ))
2423eqeq2d 2744 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
2524rexbidv 3157 . . . . . . . . . 10 (𝑖 = 𝑗 → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑖 +s 1s ) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
26 peano1 7825 . . . . . . . . . . 11 ∅ ∈ ω
27 1nns 28278 . . . . . . . . . . . 12 1s ∈ ℕs
28 fr0g 8361 . . . . . . . . . . . 12 ( 1s ∈ ℕs → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s )
2927, 28ax-mp 5 . . . . . . . . . . 11 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s
30 fveqeq2 6837 . . . . . . . . . . . 12 (𝑦 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s ))
3130rspcev 3573 . . . . . . . . . . 11 ((∅ ∈ ω ∧ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) = 1s ) → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s )
3226, 29, 31mp2an 692 . . . . . . . . . 10 𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = 1s
33 fveqeq2 6837 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑦 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s )))
34 peano2 7826 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
35 ovex 7385 . . . . . . . . . . . . . . 15 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ∈ V
36 eqid 2733 . . . . . . . . . . . . . . . 16 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)
37 oveq1 7359 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s ))
38 oveq1 7359 . . . . . . . . . . . . . . . 16 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) → (𝑧 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
3936, 37, 38frsucmpt2 8365 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4035, 39mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4133, 34, 40rspcedvdw 3576 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
4241adantl 481 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0s𝑦 ∈ ω) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ))
43 oveq1 7359 . . . . . . . . . . . . . 14 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) = ((𝑘 +s 1s ) +s 1s ))
4443eqeq2d 2744 . . . . . . . . . . . . 13 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4544rexbidv 3157 . . . . . . . . . . . 12 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → (∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) +s 1s ) ↔ ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4642, 45syl5ibcom 245 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0s𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4746rexlimdva 3134 . . . . . . . . . 10 (𝑘 ∈ ℕ0s → (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑘 +s 1s ) → ∃𝑧 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑧) = ((𝑘 +s 1s ) +s 1s )))
4813, 16, 22, 25, 32, 47n0sind 28262 . . . . . . . . 9 (𝑗 ∈ ℕ0s → ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s ))
49 frfnom 8360 . . . . . . . . . 10 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω
50 fvelrnb 6888 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω → ((𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s )))
5149, 50ax-mp 5 . . . . . . . . 9 ((𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑦) = (𝑗 +s 1s ))
5248, 51sylibr 234 . . . . . . . 8 (𝑗 ∈ ℕ0s → (𝑗 +s 1s ) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω))
53 df-ima 5632 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)
5452, 53eleqtrrdi 2844 . . . . . . 7 (𝑗 ∈ ℕ0s → (𝑗 +s 1s ) ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
55 eleq1 2821 . . . . . . 7 (𝑖 = (𝑗 +s 1s ) → (𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) ↔ (𝑗 +s 1s ) ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)))
5654, 55syl5ibrcom 247 . . . . . 6 (𝑗 ∈ ℕ0s → (𝑖 = (𝑗 +s 1s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)))
5756rexlimiv 3127 . . . . 5 (∃𝑗 ∈ ℕ0s 𝑖 = (𝑗 +s 1s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
586, 57syl 17 . . . 4 ((𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → 𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
591, 58sylbi 217 . . 3 (𝑖 ∈ ℕs𝑖 ∈ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6059ssriv 3934 . 2 s ⊆ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
61 fveq2 6828 . . . . . . 7 (𝑘 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅))
6261eleq1d 2818 . . . . . 6 (𝑘 = ∅ → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) ∈ ℕs))
63 fveq2 6828 . . . . . . 7 (𝑘 = 𝑗 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗))
6463eleq1d 2818 . . . . . 6 (𝑘 = 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs))
65 fveq2 6828 . . . . . . 7 (𝑘 = suc 𝑗 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗))
6665eleq1d 2818 . . . . . 6 (𝑘 = suc 𝑗 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs))
67 fveq2 6828 . . . . . . 7 (𝑘 = 𝑖 → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖))
6867eleq1d 2818 . . . . . 6 (𝑘 = 𝑖 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑘) ∈ ℕs ↔ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs))
6929, 27eqeltri 2829 . . . . . 6 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘∅) ∈ ℕs
70 peano2nns 28279 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ ℕs)
71 ovex 7385 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ V
72 oveq1 7359 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 +s 1s ) = (𝑥 +s 1s ))
73 oveq1 7359 . . . . . . . . . 10 (𝑦 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) → (𝑦 +s 1s ) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7436, 72, 73frsucmpt2 8365 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7571, 74mpan2 691 . . . . . . . 8 (𝑗 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ))
7675eleq1d 2818 . . . . . . 7 (𝑗 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs ↔ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) +s 1s ) ∈ ℕs))
7770, 76imbitrrid 246 . . . . . 6 (𝑗 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑗) ∈ ℕs → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘suc 𝑗) ∈ ℕs))
7862, 64, 66, 68, 69, 77finds 7832 . . . . 5 (𝑖 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs)
7978rgen 3050 . . . 4 𝑖 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs
80 fnfvrnss 7060 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) Fn ω ∧ ∀𝑖 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω)‘𝑖) ∈ ℕs) → ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ⊆ ℕs)
8149, 79, 80mp2an 692 . . 3 ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) ↾ ω) ⊆ ℕs
8253, 81eqsstri 3977 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) ⊆ ℕs
8360, 82eqssi 3947 1 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282  cmpt 5174  ran crn 5620  cres 5621  cima 5622  suc csuc 6313   Fn wfn 6481  cfv 6486  (class class class)co 7352  ωcom 7802  reccrdg 8334   No csur 27579   0s c0s 27767   1s c1s 27768   +s cadds 27903  0scnn0s 28243  scnns 28244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904  df-n0s 28245  df-nns 28246
This theorem is referenced by:  nnsind  28299  expsp1  28353
  Copyright terms: Public domain W3C validator