MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1m1nns Structured version   Visualization version   GIF version

Theorem nn1m1nns 28315
Description: Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
nn1m1nns (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))

Proof of Theorem nn1m1nns
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . 3 (𝑥 = 1s → (𝑥 = 1s ↔ 1s = 1s ))
2 oveq1 7412 . . . 4 (𝑥 = 1s → (𝑥 -s 1s ) = ( 1s -s 1s ))
32eleq1d 2819 . . 3 (𝑥 = 1s → ((𝑥 -s 1s ) ∈ ℕs ↔ ( 1s -s 1s ) ∈ ℕs))
41, 3orbi12d 918 . 2 (𝑥 = 1s → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs)))
5 eqeq1 2739 . . 3 (𝑥 = 𝑦 → (𝑥 = 1s𝑦 = 1s ))
6 oveq1 7412 . . . 4 (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s ))
76eleq1d 2819 . . 3 (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝑦 -s 1s ) ∈ ℕs))
85, 7orbi12d 918 . 2 (𝑥 = 𝑦 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs)))
9 eqeq1 2739 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝑥 = 1s ↔ (𝑦 +s 1s ) = 1s ))
10 oveq1 7412 . . . 4 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s ))
1110eleq1d 2819 . . 3 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕs ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))
129, 11orbi12d 918 . 2 (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)))
13 eqeq1 2739 . . 3 (𝑥 = 𝐴 → (𝑥 = 1s𝐴 = 1s ))
14 oveq1 7412 . . . 4 (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s ))
1514eleq1d 2819 . . 3 (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝐴 -s 1s ) ∈ ℕs))
1613, 15orbi12d 918 . 2 (𝑥 = 𝐴 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)))
17 eqid 2735 . . 3 1s = 1s
1817orci 865 . 2 ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs)
19 nnsno 28269 . . . . . 6 (𝑦 ∈ ℕs𝑦 No )
20 1sno 27791 . . . . . 6 1s No
21 pncans 28028 . . . . . 6 ((𝑦 No ∧ 1s No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦)
2219, 20, 21sylancl 586 . . . . 5 (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) = 𝑦)
23 id 22 . . . . 5 (𝑦 ∈ ℕs𝑦 ∈ ℕs)
2422, 23eqeltrd 2834 . . . 4 (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)
2524olcd 874 . . 3 (𝑦 ∈ ℕs → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))
2625a1d 25 . 2 (𝑦 ∈ ℕs → ((𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs) → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)))
274, 8, 12, 16, 18, 26nnsind 28314 1 (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2108  (class class class)co 7405   No csur 27603   1s c1s 27787   +s cadds 27918   -s csubs 27978  scnns 28259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-n0s 28260  df-nns 28261
This theorem is referenced by:  nnm1n0s  28316
  Copyright terms: Public domain W3C validator