| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn1m1nns | Structured version Visualization version GIF version | ||
| Description: Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025.) |
| Ref | Expression |
|---|---|
| nn1m1nns | ⊢ (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 1s → (𝑥 = 1s ↔ 1s = 1s )) | |
| 2 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 1s → (𝑥 -s 1s ) = ( 1s -s 1s )) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 1s → ((𝑥 -s 1s ) ∈ ℕs ↔ ( 1s -s 1s ) ∈ ℕs)) |
| 4 | 1, 3 | orbi12d 918 | . 2 ⊢ (𝑥 = 1s → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs))) |
| 5 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1s ↔ 𝑦 = 1s )) | |
| 6 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s )) | |
| 7 | 6 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝑦 -s 1s ) ∈ ℕs)) |
| 8 | 5, 7 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs))) |
| 9 | eqeq1 2735 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 = 1s ↔ (𝑦 +s 1s ) = 1s )) | |
| 10 | oveq1 7353 | . . . 4 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s )) | |
| 11 | 10 | eleq1d 2816 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕs ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)) |
| 12 | 9, 11 | orbi12d 918 | . 2 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))) |
| 13 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1s ↔ 𝐴 = 1s )) | |
| 14 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s )) | |
| 15 | 14 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝐴 -s 1s ) ∈ ℕs)) |
| 16 | 13, 15 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))) |
| 17 | eqid 2731 | . . 3 ⊢ 1s = 1s | |
| 18 | 17 | orci 865 | . 2 ⊢ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs) |
| 19 | nnsno 28253 | . . . . . 6 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ No ) | |
| 20 | 1sno 27771 | . . . . . 6 ⊢ 1s ∈ No | |
| 21 | pncans 28012 | . . . . . 6 ⊢ ((𝑦 ∈ No ∧ 1s ∈ No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) = 𝑦) |
| 23 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ ℕs) | |
| 24 | 22, 23 | eqeltrd 2831 | . . . 4 ⊢ (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) ∈ ℕs) |
| 25 | 24 | olcd 874 | . . 3 ⊢ (𝑦 ∈ ℕs → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)) |
| 26 | 25 | a1d 25 | . 2 ⊢ (𝑦 ∈ ℕs → ((𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs) → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))) |
| 27 | 4, 8, 12, 16, 18, 26 | nnsind 28298 | 1 ⊢ (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 No csur 27578 1s c1s 27767 +s cadds 27902 -s csubs 27962 ℕscnns 28243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 df-n0s 28244 df-nns 28245 |
| This theorem is referenced by: nnm1n0s 28300 |
| Copyright terms: Public domain | W3C validator |