| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn1m1nns | Structured version Visualization version GIF version | ||
| Description: Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025.) |
| Ref | Expression |
|---|---|
| nn1m1nns | ⊢ (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 1s → (𝑥 = 1s ↔ 1s = 1s )) | |
| 2 | oveq1 7376 | . . . 4 ⊢ (𝑥 = 1s → (𝑥 -s 1s ) = ( 1s -s 1s )) | |
| 3 | 2 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 1s → ((𝑥 -s 1s ) ∈ ℕs ↔ ( 1s -s 1s ) ∈ ℕs)) |
| 4 | 1, 3 | orbi12d 918 | . 2 ⊢ (𝑥 = 1s → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs))) |
| 5 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1s ↔ 𝑦 = 1s )) | |
| 6 | oveq1 7376 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s )) | |
| 7 | 6 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝑦 -s 1s ) ∈ ℕs)) |
| 8 | 5, 7 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs))) |
| 9 | eqeq1 2733 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 = 1s ↔ (𝑦 +s 1s ) = 1s )) | |
| 10 | oveq1 7376 | . . . 4 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s )) | |
| 11 | 10 | eleq1d 2813 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕs ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)) |
| 12 | 9, 11 | orbi12d 918 | . 2 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))) |
| 13 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1s ↔ 𝐴 = 1s )) | |
| 14 | oveq1 7376 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s )) | |
| 15 | 14 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝐴 -s 1s ) ∈ ℕs)) |
| 16 | 13, 15 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))) |
| 17 | eqid 2729 | . . 3 ⊢ 1s = 1s | |
| 18 | 17 | orci 865 | . 2 ⊢ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs) |
| 19 | nnsno 28258 | . . . . . 6 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ No ) | |
| 20 | 1sno 27777 | . . . . . 6 ⊢ 1s ∈ No | |
| 21 | pncans 28017 | . . . . . 6 ⊢ ((𝑦 ∈ No ∧ 1s ∈ No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) = 𝑦) |
| 23 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ ℕs) | |
| 24 | 22, 23 | eqeltrd 2828 | . . . 4 ⊢ (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) ∈ ℕs) |
| 25 | 24 | olcd 874 | . . 3 ⊢ (𝑦 ∈ ℕs → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)) |
| 26 | 25 | a1d 25 | . 2 ⊢ (𝑦 ∈ ℕs → ((𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs) → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))) |
| 27 | 4, 8, 12, 16, 18, 26 | nnsind 28303 | 1 ⊢ (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 No csur 27585 1s c1s 27773 +s cadds 27907 -s csubs 27967 ℕscnns 28248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27588 df-slt 27589 df-bday 27590 df-sle 27691 df-sslt 27728 df-scut 27730 df-0s 27774 df-1s 27775 df-made 27793 df-old 27794 df-left 27796 df-right 27797 df-norec 27886 df-norec2 27897 df-adds 27908 df-negs 27968 df-subs 27969 df-n0s 28249 df-nns 28250 |
| This theorem is referenced by: nnm1n0s 28305 |
| Copyright terms: Public domain | W3C validator |