MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1m1nns Structured version   Visualization version   GIF version

Theorem nn1m1nns 28299
Description: Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
nn1m1nns (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))

Proof of Theorem nn1m1nns
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . 3 (𝑥 = 1s → (𝑥 = 1s ↔ 1s = 1s ))
2 oveq1 7353 . . . 4 (𝑥 = 1s → (𝑥 -s 1s ) = ( 1s -s 1s ))
32eleq1d 2816 . . 3 (𝑥 = 1s → ((𝑥 -s 1s ) ∈ ℕs ↔ ( 1s -s 1s ) ∈ ℕs))
41, 3orbi12d 918 . 2 (𝑥 = 1s → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs)))
5 eqeq1 2735 . . 3 (𝑥 = 𝑦 → (𝑥 = 1s𝑦 = 1s ))
6 oveq1 7353 . . . 4 (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s ))
76eleq1d 2816 . . 3 (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝑦 -s 1s ) ∈ ℕs))
85, 7orbi12d 918 . 2 (𝑥 = 𝑦 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs)))
9 eqeq1 2735 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝑥 = 1s ↔ (𝑦 +s 1s ) = 1s ))
10 oveq1 7353 . . . 4 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s ))
1110eleq1d 2816 . . 3 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕs ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))
129, 11orbi12d 918 . 2 (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)))
13 eqeq1 2735 . . 3 (𝑥 = 𝐴 → (𝑥 = 1s𝐴 = 1s ))
14 oveq1 7353 . . . 4 (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s ))
1514eleq1d 2816 . . 3 (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕs ↔ (𝐴 -s 1s ) ∈ ℕs))
1613, 15orbi12d 918 . 2 (𝑥 = 𝐴 → ((𝑥 = 1s ∨ (𝑥 -s 1s ) ∈ ℕs) ↔ (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)))
17 eqid 2731 . . 3 1s = 1s
1817orci 865 . 2 ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs)
19 nnsno 28253 . . . . . 6 (𝑦 ∈ ℕs𝑦 No )
20 1sno 27771 . . . . . 6 1s No
21 pncans 28012 . . . . . 6 ((𝑦 No ∧ 1s No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦)
2219, 20, 21sylancl 586 . . . . 5 (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) = 𝑦)
23 id 22 . . . . 5 (𝑦 ∈ ℕs𝑦 ∈ ℕs)
2422, 23eqeltrd 2831 . . . 4 (𝑦 ∈ ℕs → ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)
2524olcd 874 . . 3 (𝑦 ∈ ℕs → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs))
2625a1d 25 . 2 (𝑦 ∈ ℕs → ((𝑦 = 1s ∨ (𝑦 -s 1s ) ∈ ℕs) → ((𝑦 +s 1s ) = 1s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕs)))
274, 8, 12, 16, 18, 26nnsind 28298 1 (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  (class class class)co 7346   No csur 27578   1s c1s 27767   +s cadds 27902   -s csubs 27962  scnns 28243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-n0s 28244  df-nns 28245
This theorem is referenced by:  nnm1n0s  28300
  Copyright terms: Public domain W3C validator