![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dip0l | Structured version Visualization version GIF version |
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dip0r.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dip0r.5 | ⊢ 𝑍 = (0vec‘𝑈) |
dip0r.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dip0l | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝑃𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dip0r.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | dip0r.5 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | nvzcl 28044 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
4 | 3 | adantr 474 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
5 | dip0r.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 5 | dipcj 28124 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (∗‘(𝐴𝑃𝑍)) = (𝑍𝑃𝐴)) |
7 | 4, 6 | mpd3an3 1592 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐴𝑃𝑍)) = (𝑍𝑃𝐴)) |
8 | 1, 2, 5 | dip0r 28127 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = 0) |
9 | 8 | fveq2d 6437 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐴𝑃𝑍)) = (∗‘0)) |
10 | cj0 14275 | . . 3 ⊢ (∗‘0) = 0 | |
11 | 9, 10 | syl6eq 2877 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐴𝑃𝑍)) = 0) |
12 | 7, 11 | eqtr3d 2863 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝑃𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 0cc0 10252 ∗ccj 14213 NrmCVeccnv 27994 BaseSetcba 27996 0veccn0v 27998 ·𝑖OLDcdip 28110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-sum 14794 df-grpo 27903 df-gid 27904 df-ginv 27905 df-ablo 27955 df-vc 27969 df-nv 28002 df-va 28005 df-ba 28006 df-sm 28007 df-0v 28008 df-nmcv 28010 df-dip 28111 |
This theorem is referenced by: ip2i 28238 ipasslem1 28241 ipasslem2 28242 |
Copyright terms: Public domain | W3C validator |