MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz0 Structured version   Visualization version   GIF version

Theorem nvz0 28047
Description: The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz0.5 𝑍 = (0vec𝑈)
nvz0.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvz0 (𝑈 ∈ NrmCVec → (𝑁𝑍) = 0)

Proof of Theorem nvz0
StepHypRef Expression
1 eqid 2800 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nvz0.5 . . . 4 𝑍 = (0vec𝑈)
31, 2nvzcl 28013 . . 3 (𝑈 ∈ NrmCVec → 𝑍 ∈ (BaseSet‘𝑈))
4 0re 10331 . . . . 5 0 ∈ ℝ
5 0le0 11420 . . . . 5 0 ≤ 0
64, 5pm3.2i 463 . . . 4 (0 ∈ ℝ ∧ 0 ≤ 0)
7 eqid 2800 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
8 nvz0.6 . . . . 5 𝑁 = (normCV𝑈)
91, 7, 8nvsge0 28043 . . . 4 ((𝑈 ∈ NrmCVec ∧ (0 ∈ ℝ ∧ 0 ≤ 0) ∧ 𝑍 ∈ (BaseSet‘𝑈)) → (𝑁‘(0( ·𝑠OLD𝑈)𝑍)) = (0 · (𝑁𝑍)))
106, 9mp3an2 1574 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑍 ∈ (BaseSet‘𝑈)) → (𝑁‘(0( ·𝑠OLD𝑈)𝑍)) = (0 · (𝑁𝑍)))
113, 10mpdan 679 . 2 (𝑈 ∈ NrmCVec → (𝑁‘(0( ·𝑠OLD𝑈)𝑍)) = (0 · (𝑁𝑍)))
121, 7, 2nv0 28016 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑍 ∈ (BaseSet‘𝑈)) → (0( ·𝑠OLD𝑈)𝑍) = 𝑍)
133, 12mpdan 679 . . 3 (𝑈 ∈ NrmCVec → (0( ·𝑠OLD𝑈)𝑍) = 𝑍)
1413fveq2d 6416 . 2 (𝑈 ∈ NrmCVec → (𝑁‘(0( ·𝑠OLD𝑈)𝑍)) = (𝑁𝑍))
151, 8nvcl 28040 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑍 ∈ (BaseSet‘𝑈)) → (𝑁𝑍) ∈ ℝ)
1615recnd 10358 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑍 ∈ (BaseSet‘𝑈)) → (𝑁𝑍) ∈ ℂ)
173, 16mpdan 679 . . 3 (𝑈 ∈ NrmCVec → (𝑁𝑍) ∈ ℂ)
1817mul02d 10525 . 2 (𝑈 ∈ NrmCVec → (0 · (𝑁𝑍)) = 0)
1911, 14, 183eqtr3d 2842 1 (𝑈 ∈ NrmCVec → (𝑁𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157   class class class wbr 4844  cfv 6102  (class class class)co 6879  cc 10223  cr 10224  0cc0 10225   · cmul 10230  cle 10365  NrmCVeccnv 27963  BaseSetcba 27965   ·𝑠OLD cns 27966  0veccn0v 27967  normCVcnmcv 27969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-sup 8591  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-z 11666  df-uz 11930  df-rp 12074  df-seq 13055  df-exp 13114  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-grpo 27872  df-gid 27873  df-ginv 27874  df-ablo 27924  df-vc 27938  df-nv 27971  df-va 27974  df-ba 27975  df-sm 27976  df-0v 27977  df-nmcv 27979
This theorem is referenced by:  nvz  28048  nvge0  28052  ipidsq  28089  nmosetn0  28144  nmoo0  28170  nmlnoubi  28175  nmblolbii  28178  blocnilem  28183
  Copyright terms: Public domain W3C validator