MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldss Structured version   Visualization version   GIF version

Theorem oldss 27792
Description: If 𝐴 is less than or equal to ordinal 𝐵, then the old set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
oldss ((𝐵 ∈ On ∧ 𝐴𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))

Proof of Theorem oldss
StepHypRef Expression
1 imass2 6053 . . . . . 6 (𝐴𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵))
21unissd 4868 . . . . 5 (𝐴𝐵 ( M “ 𝐴) ⊆ ( M “ 𝐵))
32adantl 481 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ( M “ 𝐴) ⊆ ( M “ 𝐵))
4 oldval 27764 . . . . . 6 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
54adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( O ‘𝐴) = ( M “ 𝐴))
65adantr 480 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ( O ‘𝐴) = ( M “ 𝐴))
7 oldval 27764 . . . . . 6 (𝐵 ∈ On → ( O ‘𝐵) = ( M “ 𝐵))
87adantl 481 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( O ‘𝐵) = ( M “ 𝐵))
98adantr 480 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ( O ‘𝐵) = ( M “ 𝐵))
103, 6, 93sstr4d 3991 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))
1110expl 457 . 2 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)))
12 oldf 27767 . . . . . . 7 O :On⟶𝒫 No
1312fdmi 6663 . . . . . 6 dom O = On
1413eleq2i 2820 . . . . 5 (𝐴 ∈ dom O ↔ 𝐴 ∈ On)
15 ndmfv 6855 . . . . 5 𝐴 ∈ dom O → ( O ‘𝐴) = ∅)
1614, 15sylnbir 331 . . . 4 𝐴 ∈ On → ( O ‘𝐴) = ∅)
17 0ss 4351 . . . 4 ∅ ⊆ ( O ‘𝐵)
1816, 17eqsstrdi 3980 . . 3 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( O ‘𝐵))
1918a1d 25 . 2 𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)))
2011, 19pm2.61i 182 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858  dom cdm 5619  cima 5622  Oncon0 6307  cfv 6482   No csur 27549   M cmade 27752   O cold 27753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-made 27757  df-old 27758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator