| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldss | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is less than or equal to ordinal 𝐵, then the old set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| oldss | ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imass2 6053 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵)) | |
| 2 | 1 | unissd 4868 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∪ ( M “ 𝐴) ⊆ ∪ ( M “ 𝐵)) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∪ ( M “ 𝐴) ⊆ ∪ ( M “ 𝐵)) |
| 4 | oldval 27764 | . . . . . 6 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 7 | oldval 27764 | . . . . . 6 ⊢ (𝐵 ∈ On → ( O ‘𝐵) = ∪ ( M “ 𝐵)) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( O ‘𝐵) = ∪ ( M “ 𝐵)) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐵) = ∪ ( M “ 𝐵)) |
| 10 | 3, 6, 9 | 3sstr4d 3991 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| 11 | 10 | expl 457 | . 2 ⊢ (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))) |
| 12 | oldf 27767 | . . . . . . 7 ⊢ O :On⟶𝒫 No | |
| 13 | 12 | fdmi 6663 | . . . . . 6 ⊢ dom O = On |
| 14 | 13 | eleq2i 2820 | . . . . 5 ⊢ (𝐴 ∈ dom O ↔ 𝐴 ∈ On) |
| 15 | ndmfv 6855 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom O → ( O ‘𝐴) = ∅) | |
| 16 | 14, 15 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) = ∅) |
| 17 | 0ss 4351 | . . . 4 ⊢ ∅ ⊆ ( O ‘𝐵) | |
| 18 | 16, 17 | eqsstrdi 3980 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| 19 | 18 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))) |
| 20 | 11, 19 | pm2.61i 182 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 dom cdm 5619 “ cima 5622 Oncon0 6307 ‘cfv 6482 No csur 27549 M cmade 27752 O cold 27753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-made 27757 df-old 27758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |