| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldss | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is less than or equal to ordinal 𝐵, then the old set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| oldss | ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imass2 6062 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵)) | |
| 2 | 1 | unissd 4877 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∪ ( M “ 𝐴) ⊆ ∪ ( M “ 𝐵)) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∪ ( M “ 𝐴) ⊆ ∪ ( M “ 𝐵)) |
| 4 | oldval 27799 | . . . . . 6 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 7 | oldval 27799 | . . . . . 6 ⊢ (𝐵 ∈ On → ( O ‘𝐵) = ∪ ( M “ 𝐵)) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( O ‘𝐵) = ∪ ( M “ 𝐵)) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐵) = ∪ ( M “ 𝐵)) |
| 10 | 3, 6, 9 | 3sstr4d 3999 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| 11 | 10 | expl 457 | . 2 ⊢ (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))) |
| 12 | oldf 27802 | . . . . . . 7 ⊢ O :On⟶𝒫 No | |
| 13 | 12 | fdmi 6681 | . . . . . 6 ⊢ dom O = On |
| 14 | 13 | eleq2i 2820 | . . . . 5 ⊢ (𝐴 ∈ dom O ↔ 𝐴 ∈ On) |
| 15 | ndmfv 6875 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom O → ( O ‘𝐴) = ∅) | |
| 16 | 14, 15 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) = ∅) |
| 17 | 0ss 4359 | . . . 4 ⊢ ∅ ⊆ ( O ‘𝐵) | |
| 18 | 16, 17 | eqsstrdi 3988 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| 19 | 18 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵))) |
| 20 | 11, 19 | pm2.61i 182 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 ∪ cuni 4867 dom cdm 5631 “ cima 5634 Oncon0 6320 ‘cfv 6499 No csur 27584 M cmade 27787 O cold 27788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-made 27792 df-old 27793 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |