MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posdifsd Structured version   Visualization version   GIF version

Theorem posdifsd 28117
Description: Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
posdifsd.1 (𝜑𝐴 No )
posdifsd.2 (𝜑𝐵 No )
Assertion
Ref Expression
posdifsd (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴)))

Proof of Theorem posdifsd
StepHypRef Expression
1 0sno 27861 . . . 4 0s No
21a1i 11 . . 3 (𝜑 → 0s No )
3 posdifsd.2 . . . 4 (𝜑𝐵 No )
4 posdifsd.1 . . . 4 (𝜑𝐴 No )
53, 4subscld 28083 . . 3 (𝜑 → (𝐵 -s 𝐴) ∈ No )
62, 5, 4sltadd1d 28021 . 2 (𝜑 → ( 0s <s (𝐵 -s 𝐴) ↔ ( 0s +s 𝐴) <s ((𝐵 -s 𝐴) +s 𝐴)))
7 addslid 27991 . . . 4 (𝐴 No → ( 0s +s 𝐴) = 𝐴)
84, 7syl 17 . . 3 (𝜑 → ( 0s +s 𝐴) = 𝐴)
9 npcans 28095 . . . 4 ((𝐵 No 𝐴 No ) → ((𝐵 -s 𝐴) +s 𝐴) = 𝐵)
103, 4, 9syl2anc 584 . . 3 (𝜑 → ((𝐵 -s 𝐴) +s 𝐴) = 𝐵)
118, 10breq12d 5154 . 2 (𝜑 → (( 0s +s 𝐴) <s ((𝐵 -s 𝐴) +s 𝐴) ↔ 𝐴 <s 𝐵))
126, 11bitr2d 280 1 (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5141  (class class class)co 7429   No csur 27674   <s cslt 27675   0s c0s 27857   +s cadds 27982   -s csubs 28042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-1o 8502  df-2o 8503  df-nadd 8700  df-no 27677  df-slt 27678  df-bday 27679  df-sle 27780  df-sslt 27816  df-scut 27818  df-0s 27859  df-made 27876  df-old 27877  df-left 27879  df-right 27880  df-norec 27961  df-norec2 27972  df-adds 27983  df-negs 28043  df-subs 28044
This theorem is referenced by:  sltmul2  28187  precsexlem9  28229
  Copyright terms: Public domain W3C validator