![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posdifsd | Structured version Visualization version GIF version |
Description: Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025.) |
Ref | Expression |
---|---|
posdifsd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
posdifsd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
Ref | Expression |
---|---|
posdifsd | ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27861 | . . . 4 ⊢ 0s ∈ No | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0s ∈ No ) |
3 | posdifsd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
4 | posdifsd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
5 | 3, 4 | subscld 28083 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐴) ∈ No ) |
6 | 2, 5, 4 | sltadd1d 28021 | . 2 ⊢ (𝜑 → ( 0s <s (𝐵 -s 𝐴) ↔ ( 0s +s 𝐴) <s ((𝐵 -s 𝐴) +s 𝐴))) |
7 | addslid 27991 | . . . 4 ⊢ (𝐴 ∈ No → ( 0s +s 𝐴) = 𝐴) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → ( 0s +s 𝐴) = 𝐴) |
9 | npcans 28095 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → ((𝐵 -s 𝐴) +s 𝐴) = 𝐵) | |
10 | 3, 4, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐴) +s 𝐴) = 𝐵) |
11 | 8, 10 | breq12d 5154 | . 2 ⊢ (𝜑 → (( 0s +s 𝐴) <s ((𝐵 -s 𝐴) +s 𝐴) ↔ 𝐴 <s 𝐵)) |
12 | 6, 11 | bitr2d 280 | 1 ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 class class class wbr 5141 (class class class)co 7429 No csur 27674 <s cslt 27675 0s c0s 27857 +s cadds 27982 -s csubs 28042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4906 df-int 4945 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-1o 8502 df-2o 8503 df-nadd 8700 df-no 27677 df-slt 27678 df-bday 27679 df-sle 27780 df-sslt 27816 df-scut 27818 df-0s 27859 df-made 27876 df-old 27877 df-left 27879 df-right 27880 df-norec 27961 df-norec2 27972 df-adds 27983 df-negs 28043 df-subs 28044 |
This theorem is referenced by: sltmul2 28187 precsexlem9 28229 |
Copyright terms: Public domain | W3C validator |