MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuniconst Structured version   Visualization version   GIF version

Theorem ptuniconst 22749
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptuniconst.2 𝐽 = (∏t‘(𝐴 × {𝑅}))
ptuniconst.1 𝑋 = 𝑅
Assertion
Ref Expression
ptuniconst ((𝐴𝑉𝑅 ∈ Top) → (𝑋m 𝐴) = 𝐽)

Proof of Theorem ptuniconst
StepHypRef Expression
1 ptuniconst.1 . . . 4 𝑋 = 𝑅
21toptopon 22066 . . 3 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 ptuniconst.2 . . . 4 𝐽 = (∏t‘(𝐴 × {𝑅}))
43pttoponconst 22748 . . 3 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))
52, 4sylan2b 594 . 2 ((𝐴𝑉𝑅 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))
6 toponuni 22063 . 2 (𝐽 ∈ (TopOn‘(𝑋m 𝐴)) → (𝑋m 𝐴) = 𝐽)
75, 6syl 17 1 ((𝐴𝑉𝑅 ∈ Top) → (𝑋m 𝐴) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561   cuni 4839   × cxp 5587  cfv 6433  (class class class)co 7275  m cmap 8615  tcpt 17149  Topctop 22042  TopOnctopon 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-pt 17155  df-top 22043  df-topon 22060  df-bases 22096
This theorem is referenced by:  xkopt  22806  xkopjcn  22807  poimirlem29  35806  poimirlem30  35807  poimirlem31  35808
  Copyright terms: Public domain W3C validator