| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptuniconst | Structured version Visualization version GIF version | ||
| Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptuniconst.2 | ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) |
| ptuniconst.1 | ⊢ 𝑋 = ∪ 𝑅 |
| Ref | Expression |
|---|---|
| ptuniconst | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptuniconst.1 | . . . 4 ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | 1 | toptopon 22811 | . . 3 ⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
| 3 | ptuniconst.2 | . . . 4 ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) | |
| 4 | 3 | pttoponconst 23491 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
| 5 | 2, 4 | sylan2b 594 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
| 6 | toponuni 22808 | . 2 ⊢ (𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴)) → (𝑋 ↑m 𝐴) = ∪ 𝐽) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 ∪ cuni 4874 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ∏tcpt 17408 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1o 8437 df-2o 8438 df-map 8804 df-ixp 8874 df-en 8922 df-fin 8925 df-fi 9369 df-topgen 17413 df-pt 17414 df-top 22788 df-topon 22805 df-bases 22840 |
| This theorem is referenced by: xkopt 23549 xkopjcn 23550 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 |
| Copyright terms: Public domain | W3C validator |