Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptuniconst | Structured version Visualization version GIF version |
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.) |
Ref | Expression |
---|---|
ptuniconst.2 | ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) |
ptuniconst.1 | ⊢ 𝑋 = ∪ 𝑅 |
Ref | Expression |
---|---|
ptuniconst | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptuniconst.1 | . . . 4 ⊢ 𝑋 = ∪ 𝑅 | |
2 | 1 | toptopon 21618 | . . 3 ⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
3 | ptuniconst.2 | . . . 4 ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) | |
4 | 3 | pttoponconst 22298 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
5 | 2, 4 | sylan2b 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) |
6 | toponuni 21615 | . 2 ⊢ (𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴)) → (𝑋 ↑m 𝐴) = ∪ 𝐽) | |
7 | 5, 6 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {csn 4523 ∪ cuni 4799 × cxp 5523 ‘cfv 6336 (class class class)co 7151 ↑m cmap 8417 ∏tcpt 16771 Topctop 21594 TopOnctopon 21611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1o 8113 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-fin 8532 df-fi 8909 df-topgen 16776 df-pt 16777 df-top 21595 df-topon 21612 df-bases 21647 |
This theorem is referenced by: xkopt 22356 xkopjcn 22357 poimirlem29 35367 poimirlem30 35368 poimirlem31 35369 |
Copyright terms: Public domain | W3C validator |