MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuniconst Structured version   Visualization version   GIF version

Theorem ptuniconst 23536
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptuniconst.2 𝐽 = (∏t‘(𝐴 × {𝑅}))
ptuniconst.1 𝑋 = 𝑅
Assertion
Ref Expression
ptuniconst ((𝐴𝑉𝑅 ∈ Top) → (𝑋m 𝐴) = 𝐽)

Proof of Theorem ptuniconst
StepHypRef Expression
1 ptuniconst.1 . . . 4 𝑋 = 𝑅
21toptopon 22855 . . 3 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 ptuniconst.2 . . . 4 𝐽 = (∏t‘(𝐴 × {𝑅}))
43pttoponconst 23535 . . 3 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))
52, 4sylan2b 594 . 2 ((𝐴𝑉𝑅 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))
6 toponuni 22852 . 2 (𝐽 ∈ (TopOn‘(𝑋m 𝐴)) → (𝑋m 𝐴) = 𝐽)
75, 6syl 17 1 ((𝐴𝑉𝑅 ∈ Top) → (𝑋m 𝐴) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601   cuni 4883   × cxp 5652  cfv 6531  (class class class)co 7405  m cmap 8840  tcpt 17452  Topctop 22831  TopOnctopon 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1o 8480  df-2o 8481  df-map 8842  df-ixp 8912  df-en 8960  df-fin 8963  df-fi 9423  df-topgen 17457  df-pt 17458  df-top 22832  df-topon 22849  df-bases 22884
This theorem is referenced by:  xkopt  23593  xkopjcn  23594  poimirlem29  37673  poimirlem30  37674  poimirlem31  37675
  Copyright terms: Public domain W3C validator