Proof of Theorem isrngd
Step | Hyp | Ref
| Expression |
1 | | isrngd.g |
. 2
⊢ (𝜑 → 𝑅 ∈ Abel) |
2 | | isrngd.b |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
3 | | eqid 2727 |
. . . . 5
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
4 | | eqid 2727 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
5 | 3, 4 | mgpbas 20071 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
6 | 2, 5 | eqtrdi 2783 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
7 | | isrngd.t |
. . . 4
⊢ (𝜑 → · =
(.r‘𝑅)) |
8 | | eqid 2727 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
9 | 3, 8 | mgpplusg 20069 |
. . . 4
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
10 | 7, 9 | eqtrdi 2783 |
. . 3
⊢ (𝜑 → · =
(+g‘(mulGrp‘𝑅))) |
11 | | isrngd.c |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
12 | | isrngd.a |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
13 | | fvexd 6906 |
. . 3
⊢ (𝜑 → (mulGrp‘𝑅) ∈ V) |
14 | 6, 10, 11, 12, 13 | issgrpd 18681 |
. 2
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Smgrp) |
15 | 2 | eleq2d 2814 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝑅))) |
16 | 2 | eleq2d 2814 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝑅))) |
17 | 2 | eleq2d 2814 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Base‘𝑅))) |
18 | 15, 16, 17 | 3anbi123d 1433 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)))) |
19 | 18 | biimpar 477 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
20 | | isrngd.d |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
21 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → · =
(.r‘𝑅)) |
22 | | eqidd 2728 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 = 𝑥) |
23 | | isrngd.p |
. . . . . . . 8
⊢ (𝜑 → + =
(+g‘𝑅)) |
24 | 23 | oveqdr 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 + 𝑧) = (𝑦(+g‘𝑅)𝑧)) |
25 | 21, 22, 24 | oveq123d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = (𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧))) |
26 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → + =
(+g‘𝑅)) |
27 | 7 | oveqdr 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑦) = (𝑥(.r‘𝑅)𝑦)) |
28 | 7 | oveqdr 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑧) = (𝑥(.r‘𝑅)𝑧)) |
29 | 26, 27, 28 | oveq123d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧))) |
30 | 20, 25, 29 | 3eqtr3d 2775 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧))) |
31 | | isrngd.e |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
32 | 23 | oveqdr 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑥(+g‘𝑅)𝑦)) |
33 | | eqidd 2728 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 = 𝑧) |
34 | 21, 32, 33 | oveq123d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧)) |
35 | 7 | oveqdr 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 · 𝑧) = (𝑦(.r‘𝑅)𝑧)) |
36 | 26, 28, 35 | oveq123d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
37 | 31, 34, 36 | 3eqtr3d 2775 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
38 | 30, 37 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
39 | 19, 38 | syldan 590 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
40 | 39 | ralrimivvva 3198 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
41 | | eqid 2727 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
42 | 4, 3, 41, 8 | isrng 20085 |
. 2
⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧
(mulGrp‘𝑅) ∈
Smgrp ∧ ∀𝑥
∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
43 | 1, 14, 40, 42 | syl3anbrc 1341 |
1
⊢ (𝜑 → 𝑅 ∈ Rng) |