| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-retire | Structured version Visualization version GIF version | ||
| Description: Commuted version of sn-itrere 42580. (Contributed by SN, 27-Jun-2024.) |
| Ref | Expression |
|---|---|
| sn-retire | ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-inelr 42579 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 2 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ∈ ℝ) | |
| 3 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ≠ 0) | |
| 4 | 2, 3 | rerecid2 42542 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → ((1 /ℝ 𝑅) · 𝑅) = 1) |
| 5 | 4 | oveq1d 7361 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (((1 /ℝ 𝑅) · 𝑅) · i) = (1 · i)) |
| 6 | 2, 3 | sn-rereccld 42540 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (1 /ℝ 𝑅) ∈ ℝ) |
| 7 | 6 | recnd 11140 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (1 /ℝ 𝑅) ∈ ℂ) |
| 8 | 2 | recnd 11140 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ∈ ℂ) |
| 9 | ax-icn 11065 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → i ∈ ℂ) |
| 11 | 7, 8, 10 | mulassd 11135 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (((1 /ℝ 𝑅) · 𝑅) · i) = ((1 /ℝ 𝑅) · (𝑅 · i))) |
| 12 | sn-1ticom 42527 | . . . . . . . . . 10 ⊢ (1 · i) = (i · 1) | |
| 13 | sn-it1ei 42529 | . . . . . . . . . 10 ⊢ (i · 1) = i | |
| 14 | 12, 13 | eqtri 2754 | . . . . . . . . 9 ⊢ (1 · i) = i |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (1 · i) = i) |
| 16 | 5, 11, 15 | 3eqtr3d 2774 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → ((1 /ℝ 𝑅) · (𝑅 · i)) = i) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (𝑅 · i) ∈ ℝ) | |
| 18 | 6, 17 | remulcld 11142 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → ((1 /ℝ 𝑅) · (𝑅 · i)) ∈ ℝ) |
| 19 | 16, 18 | eqeltrrd 2832 | . . . . . 6 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → i ∈ ℝ) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ((𝑅 · i) ∈ ℝ → i ∈ ℝ)) |
| 21 | 1, 20 | mtoi 199 | . . . 4 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (𝑅 · i) ∈ ℝ) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (𝑅 · i) ∈ ℝ)) |
| 23 | 22 | necon4ad 2947 | . 2 ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ → 𝑅 = 0)) |
| 24 | oveq1 7353 | . . 3 ⊢ (𝑅 = 0 → (𝑅 · i) = (0 · i)) | |
| 25 | sn-0tie0 42543 | . . . 4 ⊢ (0 · i) = 0 | |
| 26 | 0re 11114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 27 | 25, 26 | eqeltri 2827 | . . 3 ⊢ (0 · i) ∈ ℝ |
| 28 | 24, 27 | eqeltrdi 2839 | . 2 ⊢ (𝑅 = 0 → (𝑅 · i) ∈ ℝ) |
| 29 | 23, 28 | impbid1 225 | 1 ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ici 11008 · cmul 11011 /ℝ crediv 42532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-2 12188 df-3 12189 df-resub 42458 df-rediv 42533 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |