| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-retire | Structured version Visualization version GIF version | ||
| Description: Commuted version of sn-itrere 42483. (Contributed by SN, 27-Jun-2024.) |
| Ref | Expression |
|---|---|
| sn-retire | ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-inelr 42482 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 2 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ∈ ℝ) | |
| 3 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ≠ 0) | |
| 4 | 2, 3 | rerecid2 42445 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → ((1 /ℝ 𝑅) · 𝑅) = 1) |
| 5 | 4 | oveq1d 7405 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (((1 /ℝ 𝑅) · 𝑅) · i) = (1 · i)) |
| 6 | 2, 3 | sn-rereccld 42443 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (1 /ℝ 𝑅) ∈ ℝ) |
| 7 | 6 | recnd 11209 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (1 /ℝ 𝑅) ∈ ℂ) |
| 8 | 2 | recnd 11209 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ∈ ℂ) |
| 9 | ax-icn 11134 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → i ∈ ℂ) |
| 11 | 7, 8, 10 | mulassd 11204 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (((1 /ℝ 𝑅) · 𝑅) · i) = ((1 /ℝ 𝑅) · (𝑅 · i))) |
| 12 | sn-1ticom 42430 | . . . . . . . . . 10 ⊢ (1 · i) = (i · 1) | |
| 13 | sn-it1ei 42432 | . . . . . . . . . 10 ⊢ (i · 1) = i | |
| 14 | 12, 13 | eqtri 2753 | . . . . . . . . 9 ⊢ (1 · i) = i |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (1 · i) = i) |
| 16 | 5, 11, 15 | 3eqtr3d 2773 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → ((1 /ℝ 𝑅) · (𝑅 · i)) = i) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → (𝑅 · i) ∈ ℝ) | |
| 18 | 6, 17 | remulcld 11211 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → ((1 /ℝ 𝑅) · (𝑅 · i)) ∈ ℝ) |
| 19 | 16, 18 | eqeltrrd 2830 | . . . . . 6 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑅 · i) ∈ ℝ) → i ∈ ℝ) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ((𝑅 · i) ∈ ℝ → i ∈ ℝ)) |
| 21 | 1, 20 | mtoi 199 | . . . 4 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (𝑅 · i) ∈ ℝ) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (𝑅 · i) ∈ ℝ)) |
| 23 | 22 | necon4ad 2945 | . 2 ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ → 𝑅 = 0)) |
| 24 | oveq1 7397 | . . 3 ⊢ (𝑅 = 0 → (𝑅 · i) = (0 · i)) | |
| 25 | sn-0tie0 42446 | . . . 4 ⊢ (0 · i) = 0 | |
| 26 | 0re 11183 | . . . 4 ⊢ 0 ∈ ℝ | |
| 27 | 25, 26 | eqeltri 2825 | . . 3 ⊢ (0 · i) ∈ ℝ |
| 28 | 24, 27 | eqeltrdi 2837 | . 2 ⊢ (𝑅 = 0 → (𝑅 · i) ∈ ℝ) |
| 29 | 23, 28 | impbid1 225 | 1 ⊢ (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 ici 11077 · cmul 11080 /ℝ crediv 42435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-2 12256 df-3 12257 df-resub 42361 df-rediv 42436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |