Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-retire Structured version   Visualization version   GIF version

Theorem sn-retire 42499
Description: Commuted version of sn-itrere 42498. (Contributed by SN, 27-Jun-2024.)
Assertion
Ref Expression
sn-retire (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))

Proof of Theorem sn-retire
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rrecex 11227 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ∃𝑥 ∈ ℝ (𝑅 · 𝑥) = 1)
2 sn-inelr 42497 . . . . . 6 ¬ i ∈ ℝ
3 simplll 775 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ∈ ℝ)
4 simplrl 777 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → 𝑥 ∈ ℝ)
5 simplrr 778 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → (𝑅 · 𝑥) = 1)
63, 4, 5remulinvcom 42462 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → (𝑥 · 𝑅) = 1)
76oveq1d 7446 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → ((𝑥 · 𝑅) · i) = (1 · i))
84recnd 11289 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → 𝑥 ∈ ℂ)
93recnd 11289 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → 𝑅 ∈ ℂ)
10 ax-icn 11214 . . . . . . . . . . 11 i ∈ ℂ
1110a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → i ∈ ℂ)
128, 9, 11mulassd 11284 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → ((𝑥 · 𝑅) · i) = (𝑥 · (𝑅 · i)))
13 sn-1ticom 42464 . . . . . . . . . . 11 (1 · i) = (i · 1)
14 sn-it1ei 42466 . . . . . . . . . . 11 (i · 1) = i
1513, 14eqtri 2765 . . . . . . . . . 10 (1 · i) = i
1615a1i 11 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → (1 · i) = i)
177, 12, 163eqtr3d 2785 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → (𝑥 · (𝑅 · i)) = i)
18 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → (𝑅 · i) ∈ ℝ)
194, 18remulcld 11291 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → (𝑥 · (𝑅 · i)) ∈ ℝ)
2017, 19eqeltrrd 2842 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (𝑅 · i) ∈ ℝ) → i ∈ ℝ)
2120ex 412 . . . . . 6 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ((𝑅 · i) ∈ ℝ → i ∈ ℝ))
222, 21mtoi 199 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ¬ (𝑅 · i) ∈ ℝ)
231, 22rexlimddv 3161 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (𝑅 · i) ∈ ℝ)
2423ex 412 . . 3 (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (𝑅 · i) ∈ ℝ))
2524necon4ad 2959 . 2 (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ → 𝑅 = 0))
26 oveq1 7438 . . 3 (𝑅 = 0 → (𝑅 · i) = (0 · i))
27 sn-0tie0 42469 . . . 4 (0 · i) = 0
28 0re 11263 . . . 4 0 ∈ ℝ
2927, 28eqeltri 2837 . . 3 (0 · i) ∈ ℝ
3026, 29eqeltrdi 2849 . 2 (𝑅 = 0 → (𝑅 · i) ∈ ℝ)
3125, 30impbid1 225 1 (𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   · cmul 11160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-2 12329  df-3 12330  df-resub 42396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator