Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpsqrtcl | Structured version Visualization version GIF version |
Description: The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpsqrtcl | ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12431 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpge0 12436 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | |
3 | resqrtcl 14654 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 588 | . 2 ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ) |
5 | rpgt0 12435 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
6 | sqrtgt0 14659 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴)) | |
7 | 1, 5, 6 | syl2anc 588 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < (√‘𝐴)) |
8 | 4, 7 | elrpd 12462 | 1 ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 ℝcr 10567 0cc0 10568 < clt 10706 ≤ cle 10707 ℝ+crp 12423 √csqrt 14633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-seq 13412 df-exp 13473 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 |
This theorem is referenced by: sqrtdiv 14666 absrpcl 14689 rpsqrtcld 14812 2irrexpq 25413 dvsqrt 25423 loglesqrt 25439 divsqrtsumlem 25657 divsqrtsumo1 25661 bposlem7 25966 bposlem8 25967 dchrisum0fno1 26187 dchrisum0lema 26190 dchrisum0 26196 rpsqrtcn 32085 divsqrtid 32086 logdivsqrle 32142 |
Copyright terms: Public domain | W3C validator |