Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem3 Structured version   Visualization version   GIF version

Theorem irrapxlem3 40349
Description: Lemma for irrapx1 40353. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irrapxlem2 40348 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)))
2 1z 12207 . . . . . . . 8 1 ∈ ℤ
32a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℤ)
4 simpllr 776 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℕ)
54nnzd 12281 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℤ)
6 simplrr 778 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (0...𝐵))
76elfzelzd 13113 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ)
8 simplrl 777 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (0...𝐵))
98elfzelzd 13113 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ)
107, 9zsubcld 12287 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ ℤ)
11 1m1e0 11902 . . . . . . . . 9 (1 − 1) = 0
12 elfzelz 13112 . . . . . . . . . . . . 13 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
1312ad2antrl 728 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℤ)
1413zred 12282 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℝ)
15 elfzelz 13112 . . . . . . . . . . . . 13 (𝑏 ∈ (0...𝐵) → 𝑏 ∈ ℤ)
1615ad2antll 729 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℤ)
1716zred 12282 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℝ)
1814, 17posdifd 11419 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
1918biimpa 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < (𝑏𝑎))
2011, 19eqbrtrid 5088 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 − 1) < (𝑏𝑎))
21 zlem1lt 12229 . . . . . . . . 9 ((1 ∈ ℤ ∧ (𝑏𝑎) ∈ ℤ) → (1 ≤ (𝑏𝑎) ↔ (1 − 1) < (𝑏𝑎)))
222, 10, 21sylancr 590 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 ≤ (𝑏𝑎) ↔ (1 − 1) < (𝑏𝑎)))
2320, 22mpbird 260 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ≤ (𝑏𝑎))
247zred 12282 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
259zred 12282 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
2624, 25resubcld 11260 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ ℝ)
27 0red 10836 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ∈ ℝ)
2824, 27resubcld 11260 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ∈ ℝ)
294nnred 11845 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℝ)
30 elfzle1 13115 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 0 ≤ 𝑎)
318, 30syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
3227, 25, 24, 31lesub2dd 11449 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ≤ (𝑏 − 0))
3324recnd 10861 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℂ)
3433subid1d 11178 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) = 𝑏)
35 elfzle2 13116 . . . . . . . . . 10 (𝑏 ∈ (0...𝐵) → 𝑏𝐵)
366, 35syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏𝐵)
3734, 36eqbrtrd 5075 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ≤ 𝐵)
3826, 28, 29, 32, 37letrd 10989 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ≤ 𝐵)
393, 5, 10, 23, 38elfzd 13103 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ (1...𝐵))
4039adantrr 717 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (𝑏𝑎) ∈ (1...𝐵))
41 rpre 12594 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4241ad3antrrr 730 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℝ)
4342, 25remulcld 10863 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℝ)
4442, 24remulcld 10863 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℝ)
45 simpr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
4625, 24, 45ltled 10980 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎𝑏)
47 rpgt0 12598 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → 0 < 𝐴)
4847ad3antrrr 730 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < 𝐴)
49 lemul2 11685 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝑎𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)))
5025, 24, 42, 48, 49syl112anc 1376 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑎𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)))
5146, 50mpbid 235 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))
52 flword2 13388 . . . . . . . 8 (((𝐴 · 𝑎) ∈ ℝ ∧ (𝐴 · 𝑏) ∈ ℝ ∧ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) → (⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))))
5343, 44, 51, 52syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))))
54 uznn0sub 12473 . . . . . . 7 ((⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5553, 54syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5655adantrr 717 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5742recnd 10861 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℂ)
5825recnd 10861 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℂ)
5957, 33, 58subdid 11288 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · (𝑏𝑎)) = ((𝐴 · 𝑏) − (𝐴 · 𝑎)))
6059oveq1d 7228 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))
6144recnd 10861 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℂ)
6243recnd 10861 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℂ)
6344flcld 13373 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℤ)
6463zcnd 12283 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℂ)
6543flcld 13373 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℤ)
6665zcnd 12283 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℂ)
6761, 62, 64, 66sub4d 11238 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))))
68 modfrac 13457 . . . . . . . . . . . . . 14 ((𝐴 · 𝑏) ∈ ℝ → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))))
6944, 68syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))))
7069eqcomd 2743 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) = ((𝐴 · 𝑏) mod 1))
71 modfrac 13457 . . . . . . . . . . . . . 14 ((𝐴 · 𝑎) ∈ ℝ → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))
7243, 71syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))
7372eqcomd 2743 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))) = ((𝐴 · 𝑎) mod 1))
7470, 73oveq12d 7231 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))
7560, 67, 743eqtrd 2781 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))
7675fveq2d 6721 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) = (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))))
77 1rp 12590 . . . . . . . . . . . . 13 1 ∈ ℝ+
7877a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℝ+)
7944, 78modcld 13448 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℝ)
8079recnd 10861 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℂ)
8143, 78modcld 13448 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
8281recnd 10861 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℂ)
8380, 82abssubd 15017 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) = (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))))
8476, 83eqtr2d 2778 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) = (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))))
8584breq1d 5063 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
8685biimpd 232 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
8786impr 458 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))
88 oveq2 7221 . . . . . . . 8 (𝑥 = (𝑏𝑎) → (𝐴 · 𝑥) = (𝐴 · (𝑏𝑎)))
8988fvoveq1d 7235 . . . . . . 7 (𝑥 = (𝑏𝑎) → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)))
9089breq1d 5063 . . . . . 6 (𝑥 = (𝑏𝑎) → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) < (1 / 𝐵)))
91 oveq2 7221 . . . . . . . 8 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((𝐴 · (𝑏𝑎)) − 𝑦) = ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))
9291fveq2d 6721 . . . . . . 7 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) = (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))))
9392breq1d 5063 . . . . . 6 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
9490, 93rspc2ev 3549 . . . . 5 (((𝑏𝑎) ∈ (1...𝐵) ∧ ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0 ∧ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
9540, 56, 87, 94syl3anc 1373 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
9695ex 416 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → ((𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)))
9796rexlimdvva 3213 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑎 ∈ (0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)))
981, 97mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  0cn0 12090  cz 12176  cuz 12438  +crp 12586  ...cfz 13095  cfl 13365   mod cmo 13442  abscabs 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-fz 13096  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799
This theorem is referenced by:  irrapxlem4  40350
  Copyright terms: Public domain W3C validator