Step | Hyp | Ref
| Expression |
1 | | irrapxlem2 40561 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
→ ∃𝑎 ∈
(0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) |
2 | | 1z 12280 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
3 | 2 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℤ) |
4 | | simpllr 772 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℕ) |
5 | 4 | nnzd 12354 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℤ) |
6 | | simplrr 774 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (0...𝐵)) |
7 | 6 | elfzelzd 13186 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ) |
8 | | simplrl 773 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (0...𝐵)) |
9 | 8 | elfzelzd 13186 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ) |
10 | 7, 9 | zsubcld 12360 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ∈ ℤ) |
11 | | 1m1e0 11975 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
12 | | elfzelz 13185 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ) |
13 | 12 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℤ) |
14 | 13 | zred 12355 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℝ) |
15 | | elfzelz 13185 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (0...𝐵) → 𝑏 ∈ ℤ) |
16 | 15 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℤ) |
17 | 16 | zred 12355 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℝ) |
18 | 14, 17 | posdifd 11492 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → (𝑎 < 𝑏 ↔ 0 < (𝑏 − 𝑎))) |
19 | 18 | biimpa 476 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < (𝑏 − 𝑎)) |
20 | 11, 19 | eqbrtrid 5105 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 − 1) < (𝑏 − 𝑎)) |
21 | | zlem1lt 12302 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ (𝑏
− 𝑎) ∈ ℤ)
→ (1 ≤ (𝑏 −
𝑎) ↔ (1 − 1)
< (𝑏 − 𝑎))) |
22 | 2, 10, 21 | sylancr 586 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 ≤ (𝑏 − 𝑎) ↔ (1 − 1) < (𝑏 − 𝑎))) |
23 | 20, 22 | mpbird 256 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ≤ (𝑏 − 𝑎)) |
24 | 7 | zred 12355 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ) |
25 | 9 | zred 12355 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ) |
26 | 24, 25 | resubcld 11333 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ∈ ℝ) |
27 | | 0red 10909 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ∈ ℝ) |
28 | 24, 27 | resubcld 11333 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ∈ ℝ) |
29 | 4 | nnred 11918 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℝ) |
30 | | elfzle1 13188 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (0...𝐵) → 0 ≤ 𝑎) |
31 | 8, 30 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎) |
32 | 27, 25, 24, 31 | lesub2dd 11522 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ≤ (𝑏 − 0)) |
33 | 24 | recnd 10934 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℂ) |
34 | 33 | subid1d 11251 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) = 𝑏) |
35 | | elfzle2 13189 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (0...𝐵) → 𝑏 ≤ 𝐵) |
36 | 6, 35 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ≤ 𝐵) |
37 | 34, 36 | eqbrtrd 5092 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ≤ 𝐵) |
38 | 26, 28, 29, 32, 37 | letrd 11062 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ≤ 𝐵) |
39 | 3, 5, 10, 23, 38 | elfzd 13176 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 𝑎) ∈ (1...𝐵)) |
40 | 39 | adantrr 713 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (𝑏 − 𝑎) ∈ (1...𝐵)) |
41 | | rpre 12667 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
42 | 41 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℝ) |
43 | 42, 25 | remulcld 10936 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℝ) |
44 | 42, 24 | remulcld 10936 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℝ) |
45 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) |
46 | 25, 24, 45 | ltled 11053 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ≤ 𝑏) |
47 | | rpgt0 12671 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ+
→ 0 < 𝐴) |
48 | 47 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < 𝐴) |
49 | | lemul2 11758 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴)) → (𝑎 ≤ 𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))) |
50 | 25, 24, 42, 48, 49 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑎 ≤ 𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))) |
51 | 46, 50 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) |
52 | | flword2 13461 |
. . . . . . . 8
⊢ (((𝐴 · 𝑎) ∈ ℝ ∧ (𝐴 · 𝑏) ∈ ℝ ∧ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) → (⌊‘(𝐴 · 𝑏)) ∈
(ℤ≥‘(⌊‘(𝐴 · 𝑎)))) |
53 | 43, 44, 51, 52 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈
(ℤ≥‘(⌊‘(𝐴 · 𝑎)))) |
54 | | uznn0sub 12546 |
. . . . . . 7
⊢
((⌊‘(𝐴
· 𝑏)) ∈
(ℤ≥‘(⌊‘(𝐴 · 𝑎))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈
ℕ0) |
55 | 53, 54 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈
ℕ0) |
56 | 55 | adantrr 713 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈
ℕ0) |
57 | 42 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℂ) |
58 | 25 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℂ) |
59 | 57, 33, 58 | subdid 11361 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · (𝑏 − 𝑎)) = ((𝐴 · 𝑏) − (𝐴 · 𝑎))) |
60 | 59 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) |
61 | 44 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℂ) |
62 | 43 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℂ) |
63 | 44 | flcld 13446 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℤ) |
64 | 63 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℂ) |
65 | 43 | flcld 13446 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℤ) |
66 | 65 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℂ) |
67 | 61, 62, 64, 66 | sub4d 11311 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))) |
68 | | modfrac 13532 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 · 𝑏) ∈ ℝ → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏)))) |
69 | 44, 68 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏)))) |
70 | 69 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) = ((𝐴 · 𝑏) mod 1)) |
71 | | modfrac 13532 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 · 𝑎) ∈ ℝ → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) |
72 | 43, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) |
73 | 72 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))) = ((𝐴 · 𝑎) mod 1)) |
74 | 70, 73 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) |
75 | 60, 67, 74 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) |
76 | 75 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) = (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))) |
77 | | 1rp 12663 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
78 | 77 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈
ℝ+) |
79 | 44, 78 | modcld 13523 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℝ) |
80 | 79 | recnd 10934 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℂ) |
81 | 43, 78 | modcld 13523 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℝ) |
82 | 81 | recnd 10934 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℂ) |
83 | 80, 82 | abssubd 15093 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) = (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1)))) |
84 | 76, 83 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) = (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))) |
85 | 84 | breq1d 5080 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))) |
86 | 85 | biimpd 228 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) → (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))) |
87 | 86 | impr 454 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)) |
88 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = (𝑏 − 𝑎) → (𝐴 · 𝑥) = (𝐴 · (𝑏 − 𝑎))) |
89 | 88 | fvoveq1d 7277 |
. . . . . . 7
⊢ (𝑥 = (𝑏 − 𝑎) → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦))) |
90 | 89 | breq1d 5080 |
. . . . . 6
⊢ (𝑥 = (𝑏 − 𝑎) → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦)) < (1 / 𝐵))) |
91 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((𝐴 · (𝑏 − 𝑎)) − 𝑦) = ((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) |
92 | 91 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → (abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦)) = (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))) |
93 | 92 | breq1d 5080 |
. . . . . 6
⊢ (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((abs‘((𝐴 · (𝑏 − 𝑎)) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏 − 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))) |
94 | 90, 93 | rspc2ev 3564 |
. . . . 5
⊢ (((𝑏 − 𝑎) ∈ (1...𝐵) ∧ ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0 ∧
(abs‘((𝐴 ·
(𝑏 − 𝑎)) −
((⌊‘(𝐴 ·
𝑏)) −
(⌊‘(𝐴 ·
𝑎))))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵)) |
95 | 40, 56, 87, 94 | syl3anc 1369 |
. . . 4
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵)) |
96 | 95 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → ((𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵))) |
97 | 96 | rexlimdvva 3222 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
→ (∃𝑎 ∈
(0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵))) |
98 | 1, 97 | mpd 15 |
1
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℕ)
→ ∃𝑥 ∈
(1...𝐵)∃𝑦 ∈ ℕ0
(abs‘((𝐴 ·
𝑥) − 𝑦)) < (1 / 𝐵)) |